25. Some category theory

25.1. **Categories.** A category \mathcal{C} consists of the following data:

- objects $\text{Ob}(\mathcal{C})$
- for any $X, Y \in \text{Ob}(\mathcal{C})$ a set $\text{Mor}(X, Y) = \text{Mor}_\mathcal{C}(X, Y)$ called morphisms from X to Y
- for any triple $X, Y, Z \in \text{Ob}(\mathcal{C})$ a map

$$\text{Mor}(X, Y) \times \text{Mor}(Y, Z) \to \text{Mor}(X, Z)$$

$$(f, g) \mapsto g \circ f$$

called the composition law of morphisms.

The following axioms must be satisfied:

1. The sets $\text{Mor}(X, Y)$ and $\text{Mor}(X', Y')$ are disjoint unless $X = X'$ and $Y = Y'$.
2. Composition of morphisms is associative, that is, for any $f \in \text{Mor}(X, Y)$, $g \in \text{Mor}(Y, Z)$ and $h \in \text{Mor}(Z, W)$ we have

$$h \circ (g \circ f) = (h \circ g) \circ f.$$
3. For any $X \in \text{Ob}(\mathcal{C})$ there is identity morphism $1_X \in \text{Mor}(X, X)$ with the following property: if Y is any object of \mathcal{C}, then $f \circ 1_X = f$ for any $f \in \text{Mor}(X, Y)$ and $1_X \circ g = g$ for any $g \in \text{Mor}(Y, X)$.

Notation: We will often write $f : X \to Y$ instead of $f \in \text{Mor}(X, Y)$.

Here are some basic examples of categories.

Examples:

1. $\mathcal{C} = \text{SET}$, the category of sets. Objects of \mathcal{C} are arbitrary sets and $\text{Mor}(X, Y) = \text{Func}(X, Y)$, all functions from X to Y. The composition of morphisms is the usual composition of functions.

2. $\mathcal{C} = \text{GRP}$, the category of groups. Objects are all groups, $\text{Mor}(X, Y)$ is the set of groups homomorphisms from X to Y, the composition of morphisms is the usual composition of functions.

3. $\mathcal{C} = \text{TOP}$, the category of topological spaces. Objects are topological spaces, $\text{Mor}(X, Y)$ is the set of continuous functions from X to Y, the composition of morphisms is the usual composition of functions.

Here is an example of rather different kind.

4. Let A be a poset with partial order relation \leq. Then we can consider the following category \mathcal{C}. The objects of \mathcal{C} are simply elements of A, and
morphisms are defined by setting
\[\text{Mor}(x, y) = \begin{cases} \emptyset & \text{if } x \not\leq y \\ \text{The one element set consisting of the pair } (x, y) & \text{if } x \leq y. \end{cases} \]
The composition of morphisms \(\text{Mor}(x, y) \times \text{Mor}(y, z) \to \text{Mor}(x, z) \) is defined as follows:

(i) If \(x \not\leq y \) or \(y \not\leq z \), then \(\text{Mor}(x, y) \times \text{Mor}(y, z) = \emptyset \), so there exists unique map \(\text{Mor}(x, y) \times \text{Mor}(y, z) \to \text{Mor}(x, z) \) (the “do nothing” map)

(ii) If \(x \leq y \) and \(y \leq z \), then \(x \leq z \) by transitivity, so \(|\text{Mor}(x, y)| = |\text{Mor}(y, z)| = |\text{Mor}(x, z)| = 1 \). Again there exists unique map \(\text{Mor}(x, y) \times \text{Mor}(y, z) \to \text{Mor}(x, z) \) given by \((x, y), (y, z)) \mapsto (x, z)\).

Finally, associativity of composition is automatic and identity morphisms \(1_x \) exist since \(x \leq x \).

25.2. Products and coproducts.

Definition. Let \(C \) be a category and \(\{X_\alpha\} \) a collection of objects of \(C \). An object \(X \in \text{Ob}(C) \) is called a product of \(\{X_\alpha\} \) denoted \(\prod_C X_\alpha \) if there exist morphisms \(\pi_\alpha : X \to X_\alpha \) for each \(\alpha \) s.t. for any \(Y \in \text{Ob}(C) \) and any morphisms \(\varphi_\alpha : Y \to X_\alpha \) there is unique morphism \(\varphi : Y \to X \) s.t. for each \(\alpha \) we have \(\varphi_\alpha = \pi_\alpha \varphi \), or equivalently, the following diagram is commutative:

\[
\begin{array}{ccc}
X & \longrightarrow & X \\
\downarrow{\pi_\alpha} & & \downarrow{\pi_\alpha} \\
Y & \longrightarrow & X_\alpha \\
& \varphi \uparrow & \\
& Y & \varphi_\alpha \\
\end{array}
\]

A standard argument shows that if a product \(\prod_C X_\alpha \) exists, it is unique up to \(C \)-isomorphism; however, a product need not exist in general.

Examples: (1) Let \(C \) be the category of sets (resp. groups, abelian groups, rings). Then \(\prod_C X_\alpha \) always exists and coincides with the usual direct product of sets (resp. groups, abelian groups, rings).

(2) Let \(C \) be the category of fields (with morphisms being field embeddings). Then products in \(C \) do not always exist (in fact, almost never exist).

Coproducts are defined in the same way as products with all arrows reversed:

Definition. Let \(C \) be a category and \(\{X_\alpha\} \) a collection of objects of \(C \). An object \(X \in \text{Ob}(C) \) is called a coproduct of \(\{X_\alpha\} \) denoted \(\sqcup_C X_\alpha \) if there exist morphisms \(\iota_\alpha : X_\alpha \to X \) for each \(\alpha \) s.t. for any \(Y \in \text{Ob}(C) \) and any morphisms \(\varphi_\alpha : X_\alpha \to Y \) there is unique morphisms \(\varphi : X \to Y \) s.t. for
each α we have $\varphi_{\iota\alpha} = \varphi_\alpha$, that is, the following diagram is commutative:

\[
\begin{array}{c}
Y \\
\varphi_\alpha \\
X_\alpha \xrightarrow{\iota_\alpha} X
\end{array}
\]

Unlike products, coproducts in familiar categories have rather different descriptions.

Examples: (1) Let \mathcal{C} be the category of sets. Then $\sqcup_{\mathcal{C}} X_\alpha$ is the disjoint union of $\{X_\alpha\}$ (as the notation suggests).

(2) Let \mathcal{C} be the category of groups. Then $\sqcup_{\mathcal{C}} X_\alpha = \star X_\alpha$, the free product of $\{X_\alpha\}$. Informally, this means that given $\alpha' \neq \alpha$, there are no relations between the images of X_α and $X_{\alpha'}$ inside $\star X_\alpha$.

(3) Let \mathcal{C} be the category of abelian groups. Then $\sqcup_{\mathcal{C}} X_\alpha = \oplus X_\alpha$, the direct sum of $\{X_\alpha\}$.

(4) Let R be a commutative ring with 1, and let $\mathcal{C} = R -$ COMMALG be the category of commutative R-algebras. Then $\sqcup_{\mathcal{C}} X_\alpha = \otimes X_\alpha$, the tensor product of $\{X_\alpha\}$.

25.3. Motivating direct limits. Let Y be a set and let $\{X_\alpha\}_{\alpha \in A}$ be a collection of subsets of Y which form a chain, that is, for any α, β we have $X_\alpha \subseteq X_\beta$ or $X_\beta \subseteq X_\alpha$. Then we can consider $X = \sqcup X_\alpha$, the union of X_α as subsets of Y. Our goal is to find a characterization of X similar to that of the disjoint union $\sqcup X_\alpha$.

Let \leq be the order relation on the index set A defined by $\alpha \leq \beta$ if and only if $X_\alpha \subseteq X_\beta$. Note that \leq is a total order on A since $\{X_\alpha\}$ is a chain.

For each $\alpha, \beta \in A$ with $\alpha \leq \beta$ let $\iota_{\alpha, \beta} : X_\alpha \to X_\beta$ be the inclusion map. Note that for any $\alpha \leq \beta \leq \gamma$ the following diagram is commutative:

\[
\begin{array}{c}
X_\alpha \\
\downarrow^{\iota_{\alpha, \beta}} \\
X_\beta \xrightarrow{\iota_{\beta, \gamma}} X_\gamma
\end{array}
\]

Now suppose we are given another set Y and maps $\varphi_\alpha : X_\alpha \to Y$ for each $\alpha \in A$. The natural question is when does there exist a map $\varphi : X = \sqcup X_\alpha \to Y$ s.t. $\varphi|_{X_\alpha} = \varphi_\alpha$ for $\alpha \in A$?
Clearly, such \(\varphi \) exists if and only if \((\varphi_\beta)_{|X_\alpha} = \varphi_\alpha\) for any \(\alpha \leq \beta \). Equivalently, \(\varphi \) exists if and only if for any \(\alpha \leq \beta \) the following diagram is commutative:

\[
\begin{array}{c}
X_\alpha \\
\downarrow_{\iota_{\alpha,\beta}} \\
X_\beta \\
\downarrow_{\varphi_\beta} \\
X
\end{array}
\]

Thus the union \(X = \cup X_\alpha \) satisfies certain universal property similar to the one in the definition of coproduct, except that instead of considering arbitrary collections of morphisms \(\varphi_\alpha : X_\alpha \to Y \) (where \(Y \) is another set), one only considers the collections satisfying the compatibility condition (25.3). This analysis provides a motivation for the concept of direct limit, which will be given in the next lecture.