23. Cyclic extensions

Problem. Given a field \(F \), describe all finite Galois extensions \(K/F \) with \(\text{Gal}(K/F) \) cyclic.

In this lecture we shall obtain a partial solution to this problem.

23.1. Linear independence of characters.

Definition. Let \(G \) be a group and \(L \) a field. A character of \(G \) with values in \(L \) is a group homomorphism \(\chi : G \to L^* \).

Lemma 23.1. Let \(G \) be a group and \(L \) a field. Let \(\chi_1, \ldots, \chi_n : G \to L^* \) be distinct characters of \(G \) with values in \(L \). Then \(\chi_1, \ldots, \chi_n \) are linearly independent over \(L \) (as functions), that is, if we are given \(a_1, \ldots, a_n \in L \) s.t.

\[
\sum_{i=1}^{n} a_i \chi_i(g) = 0 \text{ for all } g \in G,
\]

then each \(a_i = 0 \).

Proof. Suppose not, and let \(l_1 \chi_1 + \ldots + l_m \chi_m = 0 \) be a linear dependence, with \(m \) minimal possible. Clearly, \(m \geq 2 \) and WOLOG \(l_1 \neq 0 \).

Fix \(g \in G \) s.t. \(\chi_m(g) \neq \chi_1(g) \). We have

\[
l_1 \chi_1(x) + \ldots + l_m \chi_m(x) = 0 \text{ for all } x \in G
\]

\[
l_1 \chi_1(gx) + \ldots + l_m \chi_m(gx) = 0 \text{ for all } x \in G
\]

Since each \(\chi_i \) is multiplicative, the second equation can be rewritten as

\[
l_1 \chi_1(g) \chi_1(x) + \ldots + l_m \chi_m(g) \chi_m(x) = 0 \text{ for all } x \in G
\] (***)

Multiplying the first equation by \(\chi_m(g) \) on the left and subtracting from (***)

we get

\[
\sum_{i=1}^{m-1} l_i (\chi_i(g) - \chi_m(g)) \chi_i(x) = 0 \text{ for all } x \in G.
\]

Since \(l_1 (\chi_1(g) - \chi_m(g)) \neq 0 \), we get a linear dependence between \(\chi_1, \ldots, \chi_{m-1} \), which contradicts minimality of \(m \). \(\square \)

Corollary 23.2. Let \(K \) and \(L \) be fields, and let \(\sigma_1, \ldots, \sigma_n \) be distinct embeddings of \(K \) into \(L \). Then \(\sigma_1, \ldots, \sigma_n \) are linearly independent.

Proof. Apply Lemma 23.1 with \(G = K^* \). \(\square \)
23.2. Basic facts about norms in field extensions. We recall from Homework #9 the definition of the norm of a field extension.

Definition. Let K/F be a finite separable extension. The norm function $N = N_{K/F} : K \to F$ is defined by

$$N_{K/F}(\alpha) = \prod_{\sigma \in \text{Emb}(K,F)} \sigma(\alpha).$$

The fact that the values of N lie in F is not obvious and was proved in the homework. Clearly, N is multiplicative, that is,

$$N(\alpha \beta) = N(\alpha)N(\beta).$$

Remark: Suppose that K/F is Galois. Then

1. $N(\alpha) = \prod_{\sigma \in \text{Gal}(K/F)} \sigma(\alpha)$
2. For any $\tau \in \text{Gal}(K/F)$ we have $N(\tau \alpha) = N(\alpha)$. Indeed,

$$N(\tau \alpha) = \prod_{\sigma \in \text{Gal}(K/F)} \sigma \tau(\alpha) = N(\alpha)$$

since if σ runs over all elements of $\text{Gal}(K/F)$, then so does $\sigma \tau$.

Corollary 23.3. If K/F is a finite Galois extension, then for each $\sigma \in \text{Gal}(K/F)$ and $\alpha \in K^*$ we have $N(\frac{\sigma \alpha}{\alpha}) = 1$.

Theorem 23.4 (Hilbert’s Theorem 90). Let K/F be a finite Galois extension with $\text{Gal}(K/F)$ cyclic and let σ be a generator of $\text{Gal}(K/F)$. Then for any $\beta \in K$ with $N(\beta) = 1$ there exists $\alpha \in K$ s.t. $\beta = \frac{\sigma \alpha}{\alpha}$.

Proof. Let $n = [K : F] = |\text{Gal}(K/F)| = \text{ord}(\sigma)$. Define the function $\varphi : K \to K$ by

$$\varphi(x) = \frac{x}{\beta} + \frac{\sigma(x)}{\beta \sigma(\beta)} + \cdots + \frac{\sigma^n(x)}{\beta \sigma(\beta) \cdots \sigma^{n-1}(\beta)}.$$

Since $\text{ord}(\sigma) = n$, we know that $id, \sigma, \ldots, \sigma^{n-1}$ are distinct automorphisms of K, and thus also distinct embeddings from K to K. By Corollary 23.1 $\varphi \neq 0$ as a function. Choose $\theta \in K$ s.t. $\varphi(\theta) \neq 0$, and let $\alpha = \varphi(\theta)$. We claim that $\beta = \frac{\sigma(\alpha)}{\alpha}$, which is equivalent to showing that $\sigma(\alpha) = \beta \alpha$. Indeed,

$$\alpha = \frac{\theta}{\beta} + \frac{\sigma(\theta)}{\beta \sigma(\beta)} + \frac{\sigma^2(\theta)}{\beta \sigma(\beta) \sigma^2(\beta)} + \cdots + \frac{\sigma^{n-1}(\theta)}{\beta \sigma(\beta) \cdots \sigma^{n-1}(\beta)}$$

and

$$\sigma(\alpha) = \frac{\sigma(\theta)}{\sigma(\beta)} + \frac{\sigma^2(\theta)}{\sigma(\beta) \sigma^2(\beta)} + \cdots + \frac{\sigma^n(\theta)}{\sigma(\beta) \sigma^2(\beta) \cdots \sigma^n(\beta)}$$

Note that for $1 \leq i \leq n-1$ the ith term on the RHS of (23.2) is equal to the $(i+1)$st term on the RHS of (23.1) multiplied by β. Finally, since $\sigma^n(\theta) = \theta$ and $\sigma(\beta) \sigma^2(\beta) \cdots \sigma^n(\beta) = N(\beta) = 1$, the last term on the RHS of (23.2)
equals θ and thus equals the first term on the RHS of (23.1) multiplied by β. Thus, we showed that \(\sigma(\alpha) = \beta \alpha \), as desired. \(\square \)

23.3. **Primitive roots of unity.**

Definition. Let \(F \) be a field and \(n \in \mathbb{N} \). An element \(\zeta \in F \) is called a primitive \(n \)th root of unity if \(\zeta^n = 1 \) and \(\zeta^m \neq 1 \) for \(0 < m < n \).

Example: (1) \(\mathbb{C} \) contains primitive \(n \)th root of unity for all \(n \). The same is true for any algebraically closed field of characteristic zero.

(2) If \(\text{char } F = p > 0 \), there is no primitive \(p \)th root of unity in \(F \) since \(\zeta^p = 1 \) implies that \((\zeta - 1)^p = 0\), whence \(\zeta = 1 \).

More generally, we have the following:

Claim 23.5. If \(F \) is a field and \(n \in \mathbb{N} \), then the following are equivalent:

(i) Some finite extension of \(F \) contains primitive \(n \)th root of unity

(ii) \(\text{char } F \) does not divide \(n \).

23.4. **Cyclic Galois extensions in the presence of roots of unity.**

Theorem 23.6 (Kummer). Let \(F \) be a field, \(n \in \mathbb{N} \) and suppose that \(F \) contains primitive \(n \)th root of unity. The following hold:

(a) Let \(K/F \) be a Galois extension with \(\text{Gal}(K/F) \cong \mathbb{Z}/n\mathbb{Z} \). Then \(K = F(\sqrt[n]{a}) \) for some \(a \in F \). More precisely, \(K = F(\alpha) \) for some \(\alpha \in K \) s.t. \(\alpha^n \in F \).

(b) Conversely, suppose that \(K = F(\sqrt[n]{a}) \) for some \(a \in F \). Then \(K/F \) is Galois and \(\text{Gal}(K/F) \cong \mathbb{Z}/d\mathbb{Z} \) for some \(d \mid n \).

Remark: If \(F \) does not contain primitive \(n \)th root of unity, an extension of the form \(F(\sqrt[n]{a})/F \) need not even be Galois.

Proof. (a) Let \(\zeta \in F \) be primitive \(n \)th root of unity, let \(N: K \rightarrow F \) be the norm function and let \(\sigma \) be a generator of \(\text{Gal}(K/F) \). Since \(\zeta \in F \), we have \(N(\zeta) = \zeta^n = 1 \), so by Hilbert’s Theorem 90 there exists \(\alpha \in K \) s.t. \(\zeta = \frac{\sigma(\alpha)}{\alpha} \).

So, \(\sigma(\alpha) = \zeta \alpha \), whence \(\sigma^i(\alpha) = \zeta^i \alpha \) for \(0 \leq i \leq n - 1 \). Hence the orbit of \(\alpha \) under the action of \(\text{Gal}(K/F) \) contains \(n \) distinct elements. Therefore, \(\deg_F(\alpha) \geq n = [K : F] \), and we must have \(K = F(\alpha) \).

It remains to show that \(\alpha^n \in F \). We have \(\sigma(\alpha^n) = \sigma(\alpha)^n = \zeta^n \alpha^n = \alpha^n \).

Thus, \(\alpha^n \) is fixed by \(\sigma \), whence fixed by the entire Galois group \(\text{Gal}(K/F) \). Therefore, by Proposition 21.1 \(\alpha^n \in F \).

(b) We are given that \(K = F(\alpha) \) s.t. \(a := \alpha^n \in F \). First note that \(K \) is a splitting field over \(F \) for \(x^n - a = x^n - \alpha^n = \prod_{i=1}^{n}(x - \zeta^i \alpha) \) since \(\zeta \in F \).

Hence \(K/F \) is Galois.
Any $\sigma \in \text{Gal}(K/F)$ must send α to a root of $x^n - a$, so $\sigma(\alpha) = \zeta^{I(\sigma)}\alpha$ for some integer $I(\sigma)$ which is well defined mod n. Thus, we get a map $I : \text{Gal}(K/F) \to \mathbb{Z}/n\mathbb{Z}$. It is straightforward to check that I is a homomorphism, and also I is injective as σ is completely determined by where it sends α. Therefore, $\text{Gal}(K/F)$ is a subgroup of $\mathbb{Z}/n\mathbb{Z}$, so $\text{Gal}(K/F) \cong \mathbb{Z}/d\mathbb{Z}$ for some $d \mid n$. \qed