14. Field theory

Recall that a field is a commutative ring with 1 in which all elements are invertible.

14.1. Field extensions.

Definition. A field extension is a pair of fields (K, F) where K contains F. The standard notation for a field extension is K/F.

Definition. If F and K are two fields, a map $\iota : F \to K$ is called a field embedding if ι is an injective ring homomorphism.

Remark: Any non-trivial homomorphism between fields is an embedding. If $\iota : F \to K$ is a field embedding, then $K/\iota(F)$ is a field extension. By abuse of terminology we will often say that K/F is a field extension.

If K/F is a field extension, then K is a vector space over F. The dimension of this vector space is called the degree of K over F and denoted by $[K : F]$. Thus $[K : F] = \dim_F K$. The extension K/F is called finite if $[K : F]$ is finite.

Proposition 14.1. For any fields $F \subseteq K \subseteq L$ we have

$$[L : F] = [L : K][K : F].$$

Proof. Let $\{\alpha_i\}$ be a basis of K over F and $\{\beta_i\}$ a basis of L over K. Then it is easy to see that $\{\alpha_i\beta_j\}$ is a basis of L over F (check details). □

14.2. Constructing field extensions. Let L/F be a field extension. For any subset S of L we can consider the field $F(S) = \text{the smallest subfield of } L \text{ containing both } F \text{ and } S$. We have $F \subseteq F(S) \subseteq L$.

Definition. (a) A field extension K/F is called simple if K can be obtained from F by adjoining one element, that is, $K = F(\alpha)$ for some $\alpha \in K$. Note:

$$F(\alpha) = \{\beta \in K : \beta = \frac{p(\alpha)}{q(\alpha)} \text{ for some } p(x), q(x) \in F[x] \text{ with } q(\alpha) \neq 0.\}$$

(b) K/F is called finitely generated if K can be obtained from F by adjoining finitely many elements, that is, $K = F(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in K$.

Proposition 14.2. (a) Any finite extension is finitely generated.

(b) Assume that K/F is finitely generated. Then there exist subfields $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n = K$ s.t. K_i/K_{i-1} is simple for each i.

Proof. (a) Let \(\{\alpha_1, \ldots, \alpha_n\} \) be a basis for \(K \) over \(F \). Then \(F(\alpha_1, \ldots, \alpha_n) \) contains \(\sum_{i=1}^{n} \lambda_i \alpha_i \) for any \(\lambda_i \in F \), and so \(F(\alpha_1, \ldots, \alpha_n) = K \).

(b) Suppose that \(K = F(\alpha_1, \ldots, \alpha_n) \), and define \(K_i = F(\alpha_1, \ldots, \alpha_i) \) for \(1 \leq i \leq n \). It is easy to see that \(K_i(\alpha_{i+1}) = K_{i+1} \), so \(K_{i+1}/K_i \) is simple for each \(i \).

14.3. Simple extensions. Let \(K/F \) be a field extension. Given any \(\alpha \in K \) let \(V(\alpha) = \{ f \in F[x] : f(\alpha) = 0 \} \). Clearly \(V(\alpha) \) is an ideal of \(F[x] \). We have two cases.

Case 1: \(V(\alpha) \neq \{0\} \). In this case \(\alpha \) is called algebraic over \(F \). The unique monic polynomial which generates \(V(\alpha) \) as an ideal is called the minimal polynomial of \(\alpha \) over \(F \) and denoted by \(\mu_{\alpha,F}(x) \).

Case 2: \(V(\alpha) = \{0\} \). In this case \(\alpha \) is called transcendental over \(F \).

Lemma 14.3. Let \(K/F \) be a field extension and let \(\alpha \in K \) be algebraic over \(F \). Let \(p(x) \in F[x] \) be monic. The following are equivalent:

(i) \(p(x) = \mu_{\alpha,F}(x) \)

(ii) \(p(x) \) is irreducible and \(p(\alpha) = 0 \).

Proof. Exercise.

Theorem 14.4. Assume that \(K = F(\alpha) \) for some \(\alpha \).

(a) If \(\alpha \) is algebraic over \(F \), then

(i) \(K = F[\alpha] \) = polynomials in \(\alpha \) with coefficients from \(F \)

(ii) \(K \cong F[x]/(\mu_{\alpha}(x)) \)

(iii) If \(n = \deg \mu_{\alpha}(x) \), then \([K:F] = n \) and \(\{1, \alpha, \ldots, \alpha^{n-1}\} \) is a basis of \(K \) over \(F \).

(b) If \(\alpha \) is transcendental over \(F \), then \(K \cong F(x) \), the field of rational functions over \(F \) in one variable.

Proof. (a) Define the homomorphism \(\varphi : F[x] \to K \) by \(\varphi(p(x)) = p(\alpha) \). Then \(\operatorname{Im} \varphi = F[\alpha] \) and \(\operatorname{Ker} \varphi = (\mu_{\alpha}(x)) \) (by definition). Therefore,

\[
F[\alpha] \cong F[x]/(\mu_{\alpha}(x)).
\]

Since \(\mu_{\alpha}(x) \) is irreducible by Lemma 14.3, \(F[\alpha] \) is a field. Thus, \(F[\alpha] \) is a field containing \(F \) and \(\alpha \), so \(F[\alpha] = F(\alpha) \) (as the inclusion \(F[\alpha] \subseteq F(\alpha) \) always holds). This proves (i) and (ii). (iii) is left as an exercise.

(b) Define \(\varphi : F(x) \to K \) by \(\varphi\left(\frac{p(x)}{q(x)}\right) = \frac{\varphi(p(x))}{\varphi(q(x))} \). Note that \(\varphi \) is well defined since \(\alpha \) is transcendental (so \(q(\alpha) \neq 0 \) if \(q \neq 0 \)). This time \(\varphi \) is surjective by definition, and finally \(\operatorname{Ker} \varphi = \{0\} \) again because \(\alpha \) is transcendental.
14.4. Algebraic extensions.

Definition. An extension K/F is called algebraic if any $\alpha \in K$ is algebraic over F.

Lemma 14.5. Let K/F be a finitely generated extension. The following are equivalent:

(a) K/F is finite
(b) K/F is algebraic
(c) $K = F(\alpha_1, \ldots, \alpha_n)$ for some algebraic elements $\alpha_1, \ldots, \alpha_n$.

Proof. “(a)\Rightarrow(b)” Let $n = [K : F]$. Then for any $\alpha \in K$ the elements $1, \alpha, \ldots, \alpha^n$ are linearly dependent over F, so α is algebraic over F.

“(b)\Rightarrow(c)” Since K/F is finitely generated, $K = F(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in K$, and since K/F is algebraic, each α_i must be algebraic over F.

“(c)\Rightarrow(a)” Let $K_i = F(\alpha_1, \ldots, \alpha_i)$. Then $K_i = K_{i-1}(\alpha_i)$ for each i. Since α_i is algebraic over F, it is surely algebraic over K_{i-1}, so by Theorem 14.4 we have $[K_i : K_{i-1}] < \infty$. Hence

$$[K : F] = [K_n : K_0] = \prod_{i=1}^{n} [K_i : K_{i-1}] < \infty.$$