9. Congruence classes (continued)

Definition. Let R be a ring with 1. An element $a \in R$ is called invertible if there exists $b \in R$ such that $ab = ba = 1$.

Theorem 9.1. Let $n \geq 2$ be an integer. Then an element $[a] \in \mathbb{Z}_n$ is invertible \iff a and n coprime.

Proof. “⇒” Suppose that $[a] \in \mathbb{Z}_n$ is invertible. This means that $[a][k] = [1]$ for some $k \in \mathbb{Z}$ or, equivalently $[ak] = [1]$ for some $k \in \mathbb{Z}$. Hence $ak \equiv 1 \pmod{n}$, so $1 - ak = nl$ for some $k, l \in \mathbb{Z}$ or, equivalently, $ak + nl = 1$. Since $\gcd(a, n)$ divides both a and n and hence also divides $ak + nl$, this forces $\gcd(a, n) = 1$, so a and n are coprime.

“⇐” Suppose a and n are coprime. Then by GCD Theorem there exist $k, l \in \mathbb{Z}$ such that $ak + nl = 1$. From this point we can argue as in the proof of “⇒” (but reversing the order of steps) to conclude that $[a]$ is invertible in \mathbb{Z}_n. □

Corollary 9.2. Let $n \geq 2$ be an integer. Then \mathbb{Z}_n is a field \iff n is prime.

Proof. It will be convenient to start by formulating explicitly what it means for \mathbb{Z}_n to be a field. We already know that \mathbb{Z}_n is a commutative ring with 1 (and 1 \neq 0 in \mathbb{Z}_n since $n \geq 2$). Thus \mathbb{Z}_n is a field \iff every nonzero element of \mathbb{Z}_n is invertible. Since $\mathbb{Z}_n \setminus \{[0]\} = \{[1], [2], \ldots, [n - 1]\}$, we conclude that \mathbb{Z}_n is a field $\iff [a]$ is invertible in \mathbb{Z}_n for every $a \in \mathbb{Z}$ with $1 \leq a \leq n - 1$.

We now proceed with the proof.

“⇐” Suppose that n is prime. Then every integer a with $1 \leq a \leq n - 1$ is coprime to n, so by Theorem 9.1, $[a]$ is invertible in \mathbb{Z}_n for every such a. The first paragraph of the proof now implies that \mathbb{Z}_n is a field.

“⇒” We will prove this direction by contrapositive (if n is not prime, then \mathbb{Z}_n is not a field). So assume that n is not prime. Since $n \geq 2$, this means that $n = ab$ for some integers a, b with $1 < a, b < n$. Then a is NOT coprime to n, so (again by Theorem 9.1), $[a]$ is not invertible in \mathbb{Z}_n. Since $1 \leq a \leq n - 1$, the first paragraph of the proof shows that \mathbb{Z}_n is not a field. □
Example 1. Let n be a prime. Find all $z \in \mathbb{Z}_n$ such that $z^2 = [1]$.

Solution 1: (working inside \mathbb{Z}_n) Suppose that $z^2 = [1]$. Subtracting $[1]$ from both sides, we get $z^2 - [1] = [0]$. Since $[1] = [1]^2$, we get

$$(z - [1])(z + [1]) = [0].$$

Since n is prime, \mathbb{Z}_n is a field. Hence by HW #1.2, we conclude from (***) that $z - [1] = 0$ or $z + [1] = 0$. Thus, either $z = [1]$ or $z = -[1] = [n-1]$.

So far we showed that equality $z^2 = [1]$ implies $z = [1]$ or $z = [n-1]$, so there are at most two solutions. To check that $[1]$ and $[n-1]$ are indeed solutions, we plug them into the original equation: $[1]^2 = [1]^2 = [1]$ and $[n-1]^2 = [(-1)^2] = [1]$, so both 1 and $n-1$ are solutions.

Final answer: $z = [1]$ or $[n-1]$.

Solution 2: (reducing to question about integers) We know that $z = [x]$ for some $x \in \mathbb{Z}$. Thus our equation is $[x]^2 = [1]$ which can be rewritten as $[x^2] = [1]$. The latter means that $x^2 \equiv 1 \mod n$, that is, $n \mid (x^2 - 1)$.

Thus, $n \mid (x - 1)(x + 1)$, and by Euclid’s lemma (recall that n is prime), we have $n \mid (x-1)$ or $n \mid (x+1)$. Hence either $x \equiv 1 \mod n$, in which case $[x] = [1]$, or $x \equiv -1 \mod n$, in which case $[x] = [-1] = [n-1]$. As in Solution 1, we check that $z = [1]$ and $z = [n-1]$ are solutions by plugging them into the original equation.

Exercise 1. Show (by an explicit example) that if n is not prime, the equation $z^2 = [1]$ may have more than 2 solutions (this is true for some, but not all non-prime n).

We finished the lecture by discussing the connection between the ring \mathbb{Z}_n introduced in Lecture 8 (referred below as “new” \mathbb{Z}_n) and the “hypothetical ring \mathbb{Z}_n” discussed in Lecture 2 (referred below as “old” \mathbb{Z}_n). Recall that in Lecture 2 we defined \mathbb{Z}_n to be the set of integers $\{0, 1, \ldots, n-1\}$ and asked the following question: can we define operations \oplus and \odot on \mathbb{Z}_n such that

(i) \mathbb{Z}_n with these operations is a commutative ring with 1

(ii) $x \oplus y = x + y$ whenever $0 \leq x + y \leq n-1$ and $x \odot y = xy$ whenever $0 \leq xy \leq n-1$ (where the sum and the product on the right-hand sides are the usual addition and multiplication)?

We can now answer this question in the affirmative: take the addition and multiplication tables for the new \mathbb{Z}_n, remove all the brackets and relabel the operations as \oplus and \odot. Then it is easy to see (i) and (ii) will hold.
A natural question is whether there are explicit formulas for \oplus and \odot on the “old” \mathbb{Z}_n. The answer is yes, but we need an additional notation. Given $x \in \mathbb{Z}$, denote by \overline{x} the remainder of dividing x by n (that is, \overline{x} is the unique integer between 0 and $n-1$ such that $x \equiv \overline{x} \mod n$). Then the operations \oplus and \odot on the “old” \mathbb{Z}_n are given by the formulas

\[x \oplus y = \overline{x} + y \quad \text{and} \quad x \odot y = \overline{xy} \quad (**) \]

One may wonder now why we had to define \mathbb{Z}_n in a fancy way as the set of congruence classes mod n instead of presumably simpler old definition $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ with operations defined by (**). The answer is that if operations were defined by (**), it would have required much more work to verify the ring axioms. In addition, the fact that in the new definition we can consider \overline{x} as an element of \mathbb{Z}_n for every $x \in \mathbb{Z}$ (not just x between 0 and $n-1$) turns out to be extremely convenient.