17. Symmetric groups

Fix an integer \(n > 1 \), and let \(S_n \) be the set of all bijective functions \(f : \{1, \ldots, n\} \to \{1, \ldots, n\} \). As discussed in Lecture 10, \(S_n \) is a group with respect to composition. The groups \(S_n \) are called symmetric groups, and elements of \(S_n \) are called permutations. Sometimes symmetric groups are also called permutation groups, but this is not an accurate terminology. Usually by permutation groups one means a subgroup of a symmetric group (thus, symmetric groups are special kinds of permutation groups).

We begin by computing the order of \(S_n \). By definition \(|S_n|\) is the number of ways to choose a bijective function \(f : \{1, \ldots, n\} \to \{1, \ldots, n\} \).

Note that \(f(1) \) could be any natural number from 1 to \(n \), so there are \(n \) ways to choose \(f(1) \); once \(f(1) \) is chosen, \(f(2) \) can be any number distinct from \(f(1) \), so there are \(n - 1 \) choices for \(f(2) \), then \(n - 2 \) choices for \(f(3) \) etc. Finally, we have just 1 choice for the last element \(f(n) \). Overall we have \(n(n - 1) \cdots 2 \cdot 1 = n! \) choices. Thus, \(|S_n| = n!|\).

17.1. Cycle decompositions. There are two standard ways to represent elements of \(S_n \). The first one is two-line notation introduced in Lecture 10. For instance, the element of \(S_6 \) defined by \(f(1) = 4, f(2) = 6, f(3) = 3, f(4) = 5, f(5) = 1 \) and \(f(6) = 2 \) has the following representation by two-line notation:

\[
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix}.
\]

The second representation is the cycle decomposition which we now define. Given \(f \in S_n \), the set \(\{1, 2, \ldots, n\} \) can be decomposed as a disjoint union of subsets such that \(f \) cyclically permutes elements of each subset. For instance, for the above element \(f \in S_6 \) there will be three such subsets: \(\{1, 4, 5\}, \{2, 6\} \) and 3 since \(f \) permutes elements 1, 2, 3, 4, 5, 6 as follows: 1 \(\overset{f}{\rightarrow} \) 4 \(\overset{f}{\rightarrow} \) 5 \(\overset{f}{\rightarrow} \) 1; 2 \(\overset{f}{\rightarrow} \) 6 \(\overset{f}{\rightarrow} \) 2 and 3 \(\overset{f}{\rightarrow} \) 3.

Symbolically we write \(f = (1, 4, 5)(2, 6)(3) \). The expression \((1, 4, 5)(2, 6)(3) \) is called the cycle decomposition of \(f \), and the “parts” of this decomposition, namely \((1, 4, 5), (2, 6) \) and \((3) \), are called the cycles of \(f \).

Each element \(f \) can be recovered from its cycle decomposition: if we are given the cycle decomposition of some \(f \in S_n \) and \(i \in \{1, \ldots, n\} \), and we want to compute \(f(i) \), we first find the cycle which contains \(i \). If \(i \) is not the last element in its cycle (counting from left to right), then \(f(i) \) is the next
element in the same cycle, and if i is the last element in its cycle, then $f(i)$ is the first element in the same cycle.

Note that the order of cycles in a cycle decomposition of a given element does not matter: for instance $(1, 4, 5)(2, 6)(3) = (2, 6)(1, 4, 5)(3)$. Also we can cyclically permute elements within each cycle, e.g. $(1, 4, 5) = (4, 5, 1) = (5, 1, 4)$. However, $(1, 4, 5) \neq (1, 5, 4)$.

Cycles of length 1 are called fixed points. For instance, the above f has one fixed point, namely 3. It is a standard convention to omit fixed points from the cycle decomposition, that is, write $(1, 4, 5)(2, 6)$ instead of $(1, 4, 5)(2, 6)(3)$ (it is assumed that the missing elements are fixed).

17.2. **Products of disjoint cycles.** The expression like $(1, 4, 5)(2, 6)$ for an element of S_6 can be interpreted in two a priori different ways. First, we can think of it precisely as described above: $(1, 4, 5)(2, 6)$ is the element $f \in S_6$ whose cycle decomposition is $(1, 4, 5)(2, 6) = (1, 4, 5)(2, 6)(3)$. On the other hand, we can consider two other elements $g, h \in S_6$:

$$g = (1, 4, 5) = (1, 4, 5)(2)(3)(6)$$
$$h = (2, 6) = (2, 6)(1)(4)(3)(5).$$

Then one can also interpret $(1, 4, 5)(2, 6)$ as the product of g and h in S_6 (that is, the composition of g and h). A natural question is whether these two interpretations are the same, that is, whether $f = gh$.

Fortunately, the answer to this question is yes, as one can check by straightforward verification in the above example (the proof in the general case is essentially the same).

Definition. An element $f \in S_n$ is called a cycle if the cycle decomposition of f has just one cycle (excluding fixed points).

For instance, $(1, 4, 5) \in S_6$ is a cycle of length 3 and $(2, 6) \in S_6$ is a cycle of length 2 in S_6, while $(1, 4, 5)(2, 6)$ is not a cycle.

Definition. Two cycles $u = (i_1, \ldots, i_k)$ and $v = (j_1, \ldots, j_l)$ are called disjoint if no integer appears in both u and v.

Equivalence of two possible interpretations of a cycle decomposition yields the following theorem:

Theorem 17.1. Any element of S_n can be written as a product of disjoint cycles.

Remark: Here we allow the empty product which by convention represents the identity element $e \in S_n$.

Let us now see how to multiply two non-disjoint cycles.
Example 1. Let $f = (1,2,3,5,6)$ and $g = (1,2,3,6,4)$ be elements of S_6. Write fg as a product of disjoint cycles (equivalently, find the cycle decomposition of fg).

We track the image of each element of $\{1,2,3,4,5,6\}$ under the composition fg (recall that we first apply g and then f). We have $1 \xrightarrow{g} 2 \xrightarrow{f} 3; 3 \xrightarrow{g} 6 \xrightarrow{f} 1$. This completes the first cycle of fg, namely $(1,3)$.

$2 \xrightarrow{g} 3 \xrightarrow{f} 5; 5 \xrightarrow{g} 5 \xrightarrow{f} 6; 6 \xrightarrow{g} 4 \xrightarrow{f} 4; 4 \xrightarrow{g} 1 \xrightarrow{f} 2$. Thus, the second cycle of fg is $(2,5,6,4)$, and the final answer is $fg = (1,3)(2,5,6,4)$.

17.3. Orders of elements in S_n.

Claim 17.2. A cycle of length k has order k (as an element of S_n)

We do not give a formal proof of this result, but illustrate it using two examples (the second example essentially shows why the result is true in general).

Let $f = (1,3) \in S_4$. Then $f \neq e$, but $f^2 = (1,3)(1,3)$. Thus, $1 \xrightarrow{f} 3 \xrightarrow{f} 1$ and $3 \xrightarrow{f} 1 \xrightarrow{f} 3$, so f^2 fixes 1 and 3, and clearly f^2 must fix 2 and 4 (since f fixes 2 and 4). Thus f^2 fixes every element of $\{1,2,3,4\}$, so $f^2 = e$.

Let $f = (1,3,4,6) \in S_6$. Note that f^k will send each $i \in \{1,3,4,6\}$ to the element which appears k positions to the right of i (in the “cyclic sense”). Thus $f^2 = (1,4)(3,6), f^3 = (1,6,3,4)$ and $f^4 = e$.

Now let us see compute the order of an element which is not a cycle.

Example 2. Let $f = f_1 f_2 f_3 \in S_9$ where $f_1 = (1,3,4,6), f_2 = (2,7)$ and $f_3 = (5,8,9)$. Compute $o(f)$.

By definition of order, we need to find the smallest positive n s.t. $f^n = e$.
We know by Claim 17.2 that $o(f_1) = 4, o(f_2) = 2$ and $o(f_3) = 3$.

Since f_1, f_2 and f_3 are disjoint cycles, it is clear that they commute with each other, so $f^n = (f_1 f_2 f_3)^n = f_1^n f_2^n f_3^n$ for every $n \in \mathbb{N}$. Also since f_1, f_2 and f_3 move different elements, it is clear that $f^n = e \iff f_1^n = f_2^n = f_3^n = e$. Thus, we are looking for the smallest positive n such that $f_1^n = f_2^n = f_3^n = e$.

The following result is an immediate consequence of Theorem 13.1: if g is an element of some group G and $d = o(g)$ is finite, then for any $k \in \mathbb{N}$ we have $g^k = e \iff d \mid k$ (that is, a power of g is equal to $e \iff$ the exponent is a multiple of the order of g). Applying this result in our situations, we get that $f_1^n = f_2^n = f_3^n = e \iff 4 = o(f_1) \mid n, 2 = o(f_2) \mid n$ and $3 = o(f_3) \mid n$.

By definition, the smallest n with this property is $LCM(2,3,4) = 12$.

Applying the same logic to an arbitrary element of S_n, we obtain the following theorem:

Theorem 17.3. Let $f \in S_n$, and suppose f is a product of disjoint cycles of lengths n_1, \ldots, n_r. Then $o(f) = \text{LCM}(n_1, \ldots, n_r)$.

17.4. **Cayley’s Theorem.** In this section we prove the following remarkable theorem:

Theorem 17.4 (Cayley’s Theorem). Let G be a finite group of order n. Then G is isomorphic to a subgroup of S_n.

Remark: A more general version of Cayley’s theorem (which can be proved by the same argument) asserts that any group G is isomorphic to a subgroup of $\text{Sym}(G)$ (the group of all bijective functions from G to itself). We restrict ourselves to finite groups primarily for notational simplicity.

Proof. First of all note that to prove the theorem it will be sufficient to construct an injective homomorphism $\varphi : G \to S_n$. Indeed, if $\varphi : G \to S_n$ is any homomorphism, we can also think of φ as a homomorphism from G to $\varphi(G)$ (recall from Lecture 16 that $\varphi(G)$ is always a subgroup), and φ will be surjective as a map from G to $\varphi(G)$. If the original φ is also injective, it will still be injective as a map from G to $\varphi(G)$; thus φ will be an isomorphism from G to $\varphi(G)$. Thus, G is isomorphic to $\varphi(G)$, and by construction $\varphi(G)$ is a subgroup of S_n.

We define an injective homomorphism $\varphi : G \to S_n$ as follows. Denote the elements of G by symbols g_1, g_2, \ldots, g_n (the order does not matter). Take any element $g \in G$, and consider the sequence gg_1, gg_2, \ldots, gg_n (note that this is precisely the g-row of the multiplication table of G). By Sudoku property the sequence gg_1, gg_2, \ldots, gg_n contains the same elements as g_1, g_2, \ldots, g_n, but in a (possibly) different order. Formally this means that there exists a bijection $f : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ such that $gg_k = g_{f(k)}$ for all $1 \leq k \leq n$. We can think of f as an element of S_n (note that f depends only of g), and define $\varphi : G \to S_n$ by $\varphi(g) = f$. In other words, we define $\varphi(g)$ to be the unique element of S_n such that

$$gg_k = g_{\varphi(g)(k)} \text{ for all } 1 \leq k \leq n \quad (\ast \ast \ast)$$

It is important to understand the meaning of the expression $(\varphi(g))(k)$. First we apply φ to g to get an element of S_n which in turn is a function from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, n\}$. Then we apply this function to an integer k, and the result is also an integer between 1 and n.

We now prove that φ given by (***), is an injective homomorphism. First we check that φ is a homomorphism, that is, $\varphi(gh) = \varphi(g)\varphi(h)$ for all $g, h \in S_n$. Note that both $\varphi(gh)$ and $\varphi(g)\varphi(h)$ are elements of S_n (here $\varphi(g)\varphi(h)$ is the composition of $\varphi(g)$ and $\varphi(h)$), that is, functions from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, n\}$. By definition two functions are equal to each other if and only if they have the same value at every input, so we need to check the equality $(\varphi(gh))(k) = (\varphi(g)\varphi(h))(k)$ for every $k \in \mathbb{N}$.

By the definition of φ in (***), we have $(gh)g_k = g_{(\varphi(gh))(k)}$. On the other hand, $hg_k = g_{(\varphi(h))(k)}$. Let $i = (\varphi(h))k$, so that $h g_k = g_i$. Applying (***), with k replaced by i, we get $g g_i = g_{\varphi(g)(i)}$. Therefore, $(gh)h_k = g(h g_k) = g g_i = g_{\varphi(g)(i)} = g_{\varphi(g)((\varphi(h))k)} = g_{\varphi(g)(\varphi(h))(k)}$ (where the last step holds since $\varphi(g)\varphi(h)$ is the composition of $\varphi(g)$ and $\varphi(h)$, as functions).

Thus, we obtained two different expressions for $(gh)g_k$, and setting them equal to each other, we conclude that $g_{(\varphi(gh))(k)} = g_{(\varphi(g)\varphi(h))(k)}$, and therefore $(\varphi(gh))(k) = (\varphi(g)\varphi(h))(k)$, as desired.

Thus, we proved that φ is a homomorphism. By Theorem 16.3, to prove that φ is injective, it suffices to show that $\ker(\varphi) = \{e\}$. Since $\ker(\varphi)$ always contains e, we just need to show that $\varphi(g) = id$ forces $g = e_G$ (here id is the identity permutation which is the identity element of S_n). So take any $g \in G$ such that $\varphi(g) = id$. This means that $(\varphi(g))(k) = k$ for all k, so $g g_k = g_{\varphi(g)(k)} = g_k$ for all k. Already knowing this equation for a single k forces $g = e_G$ by cancellation law. Thus, $\ker(\varphi) = \{e\}$, so φ is injective. \[\square\]

We shall now explicitly compute the homomorphism from the proof of Cayley’s theorem in a specific example.

Example 3. Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, and let $\varphi : G \to S_4$ the homomorphism from the proof of Cayley’s theorem. Compute $\varphi(G)$.

Let $g_1 = ([0], [0])$ be the identity element of G, and let g_2, g_3 and g_4 denote the other three elements (the order does not matter). By direct computation (or by an argument from Lecture 18), the multiplication table of G is

<table>
<thead>
<tr>
<th></th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>g_1</td>
<td>g_2</td>
<td>g_3</td>
<td>g_4</td>
</tr>
<tr>
<td>g_2</td>
<td>g_2</td>
<td>g_3</td>
<td>g_4</td>
<td>g_1</td>
</tr>
<tr>
<td>g_3</td>
<td>g_3</td>
<td>g_4</td>
<td>g_1</td>
<td>g_2</td>
</tr>
<tr>
<td>g_4</td>
<td>g_4</td>
<td>g_1</td>
<td>g_2</td>
<td>g_3</td>
</tr>
</tbody>
</table>
By definition, to determine $\varphi(g)$ in two-line notation, we simply look at the sequence of indices in the g-row of the multiplication table. Thus

\[
\begin{align*}
\varphi(g_1) &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \\
\varphi(g_2) &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, \\
\varphi(g_3) &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \\
\varphi(g_4) &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.
\end{align*}
\]

Converting to the cycle notation, we get

\[
\varphi(g_1) = id, \quad \varphi(g_2) = (1, 2)(3, 4), \quad \varphi(g_3) = (1, 3)(2, 4), \quad \varphi(g_4) = (1, 4)(2, 3).
\]

Thus, we conclude that the four elements \{id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\} form a subgroup of S_4 isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. This subgroup actually has a special name, the Klein 4-group.

17.5. **Book references.** The general references for the first 3 sections in lecture are [Pinter, Chapter 8] and [Gilbert, 4.1]. Cayley’s Theorem is proved at the end of [Pinter, Chapter 9] as well as [Gilbert, 4.2].