16A. Direct products and Classification of Finite Abelian Groups

16A.1. Direct products.

Definition. Let G and H be groups. Their direct product is the group $G \times H$ defined as follows. As a set $G \times H = \{(g, h) : g \in G, h \in H\}$ is just the usual Cartesian product of G and H (the set of ordered pairs where the first component lies in G and the second component lies in H). The group operation on $G \times H$ is defined by the formula

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2) \text{ for all } g_1, g_2 \in G \text{ and } h_1, h_2 \in H.$$

Here g_1g_2 is the product of g_1 and g_2 in G and h_1h_2 is the product of h_1 and h_2 in H.

Verification of group axioms for $G \times H$ is straightforward. The identity element of $G \times H$ is the pair (e_G, e_H) where e_G is the identity element of G and e_H is the identity element of H. Inverses in $G \times H$ are given by the formula

$$(g, h)^{-1} = (g^{-1}, h^{-1}).$$

The above definition easily generalizes to the case of more than 2 groups. Given any finite sequence of groups G_1, \ldots, G_k, we define their direct product $G_1 \times \ldots \times G_k$ to be the set of all k-tuples (g_1, \ldots, g_k) with $g_i \in G_i$ for all i, with group operation defined by

$$(g_1, \ldots, g_k)(g'_1, \ldots, g'_k) = (g_1g'_1, \ldots, g_kg'_k) \text{ where } g_i, g'_i \in G_i \text{ for all } i.$$

Lemma 16A.1. The following hold:

(a) For any two groups G and H, the direct products $G \times H$ and $H \times G$ are isomorphic. More generally, if G_1, \ldots, G_k are any groups and i_1, \ldots, i_k is any permutation of $1, \ldots, k$, then

$$G_1 \times \ldots \times G_k \cong G_{i_1} \times \ldots \times G_{i_k}.$$

(b) For any three groups G, H and K the groups $G \times H \times K$ and $G \times (H \times K)$ are isomorphic. More generally, for any sequence of groups G_1, \ldots, G_k we have $G_1 \times G_2 \times \ldots \times G_k \cong G_1 \times (G_2 \times \ldots \times G_k)$.

Sketch of proof. (a) Define $\varphi : G \times H \to H \times G$ by $\varphi((g, h)) = (h, g)$. Then φ is clearly bijective, and it is straightforward to check that φ preserves the group operation. In the more general setting an isomorphism between
$G_1 \times \ldots \times G_k$ and $G_{i_1} \times \ldots \times G_{i_k}$ is given by the formula $\varphi((g_1, \ldots, g_k)) = (g_{i_1}, \ldots, g_{i_k})$.

(b) Similarly to (a), the map $\varphi : G \times H \times K \to G \times (H \times K)$ given by $\varphi((g, h, k)) = (g, (h, k))$ is an isomorphism. More generally, the map $\varphi : G_1 \times G_2 \times \ldots \times G_k \to G_1 \times (G_2 \times \ldots \times G_k)$ given by $\varphi((g_1, g_2, \ldots, g_k)) = (g_1, (g_2, \ldots, g_k))$ is an isomorphism. □

If G_1, \ldots, G_k are finite groups, the order of their direct product is equal to the product of the orders:

(16A.1) $|G_1 \times G_2 \times \ldots \times G_k| = |G_1| \cdot |G_2| \cdot \ldots \cdot |G_k|.$

Indeed, if we want to construct an element of $G_1 \times \ldots \times G_k$, we have $|G_1|$ choices for the first component, $|G_2|$ choices for the second component etc. and finally $|G_k|$ choices for the kth component. Since choices at each step are made independently, the total number of choices is $|G_1| \cdot |G_2| \cdot \ldots \cdot |G_k|$.

16A.2. **Classification Theorem of Finite Abelian Groups.** If G_1, \ldots, G_k are abelian groups, it is clear from the definition that their direct product $G_1 \times \ldots \times G_k$ is also abelian. In particular, given any integers n_1, \ldots, n_k with $n_i \geq 2$ for all i, the direct product $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$ is abelian (as usual by \mathbb{Z}_n we mean \mathbb{Z}_n with respect to addition). It turns out that every finite abelian group is isomorphic to a group of this form.

Theorem 16A.2 (Fundamental Theorem of Finite Abelian Groups, weak form). Let G be a finite abelian group with $|G| \geq 2$. Then there exist integers n_1, \ldots, n_k such that $G \cong \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$.

Later in the lecture we will refine the above statement, in particular, adding a suitable uniqueness part. Let us see some immediate applications of this Theorem to classification of abelian groups of small order.

Example 1. Let G be an abelian group of order 4. Since $|\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}| = n_1 \ldots n_k$ by (16A.1) and the only ways to write 4 as a product of integers ≥ 2 are 4 itself and 2·2, Theorem 16A.2 implies that G must be isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Remark: In Lecture 18 we will show (using a different argument) that actually every group of order 4 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$, so in particular, every group of order 4 is abelian.

Recall that in Lecture 13 we have considered two abelian groups of order 4 which do not appear in the form $\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k}$, namely $\mathbb{Z}_5^\times = \{[1], [2], [3], [4]\}$ (invertible elements of \mathbb{Z}_5 with respect to multiplication)
and \(\mathbb{Z}_8^x = \{[1],[3],[5],[7]\} \). By the above argument each of those groups must be isomorphic to \(\mathbb{Z}_4 \) or \(\mathbb{Z}_2 \times \mathbb{Z}_2 \), but which one?

We claim that \(\mathbb{Z}_5 \times \mathbb{Z}_8 \simeq \mathbb{Z}_4 \) while \(\mathbb{Z}_5 \times \mathbb{Z}_8 \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \). Indeed, as verified in Lecture 13, \(\mathbb{Z}_5 \) is cyclic, hence \(\mathbb{Z}_5 \times \mathbb{Z}_8 \simeq \mathbb{Z}_4 \) by Theorem 15.2. On the other hand (again by Lecture 13), \(\mathbb{Z}_5 \times \mathbb{Z}_8 \) is not cyclic, so it cannot be isomorphic to \(\mathbb{Z}_4 \) (since a group isomorphic to a cyclic group must be cyclic). Therefore, \(\mathbb{Z}_5 \times \mathbb{Z}_8 \) must be isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

Example 2. Let \(G \) be an abelian group of order 6. As in previous example, by Theorem 16A.2 \(G \) must be isomorphic to \(\mathbb{Z}_6 \) or \(\mathbb{Z}_2 \times \mathbb{Z}_3 \). We do not need to include \(\mathbb{Z}_3 \times \mathbb{Z}_2 \) in the list since \(\mathbb{Z}_3 \times \mathbb{Z}_2 \) is isomorphic to \(\mathbb{Z}_6 \) by Lemma 16A.1(a); however, it turns out that the above list already includes a redundancy as \(\mathbb{Z}_2 \times \mathbb{Z}_3 \) is isomorphic to \(\mathbb{Z}_6 \).

Since operation in both \(\mathbb{Z}_2 \) and \(\mathbb{Z}_3 \) is denoted by +, we will use additive notation in \(\mathbb{Z}_2 \times \mathbb{Z}_3 \) as well (this is a standard convention); in particular, for an element \(g \in \mathbb{Z}_2 \times \mathbb{Z}_3 \) and \(l \in \mathbb{Z} \) we will write \(lg \) instead of \(g^l \).

By Theorem 15.2, to prove that \(\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6 \), it suffices to prove that \(\mathbb{Z}_2 \times \mathbb{Z}_3 \) is cyclic. We claim that \(g = ([1],[1]) \) is a generator of \(\mathbb{Z}_2 \times \mathbb{Z}_3 \).

Indeed, for any \(l \in \mathbb{Z} \) we have

\[
lg = g + \ldots + g = ([1] + \ldots + [1], [1] + \ldots + [1]) = ([l],[l]),
\]

and \(([l],[l]) \) is equal to \(([0],[0]) \) if and only if \(l \) is both a multiple of 2 and a multiple of 3, that is, \(l \) is a multiple of 6. Thus, the smallest positive \(l \) such that \(lg = ([0],[0]) \) is \(l = 6 \), so \(o(g) = 6 = |\mathbb{Z}_2 \times \mathbb{Z}_3| \), so \(g \) is indeed a generator.

The result of the last example can be generalized as follows.

Theorem 16A.3. Let \(m, n \geq 2 \) be integers. Then \(\mathbb{Z}_n \times \mathbb{Z}_m \) is cyclic if and only if \(n \) and \(m \) are coprime. More generally, given any integers \(n_1, \ldots, n_k \) with \(n_i \geq 2 \), the group \(\mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k} \) is cyclic if and only if \(n_1, \ldots, n_k \) are pairwise coprime.

The proof of this theorem is left as an exercise in Homework#8.

The following result is a direct consequence of Theorem 16A.3 and Theorem 15.2:

Corollary 16A.4. Let \(n \geq 2 \) be an integer, and write \(n = p_1^{a_1} \ldots p_k^{a_k} \) where \(p_1, \ldots, p_k \) are distinct primes. Then

\[
\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{a_1}} \times \ldots \times \mathbb{Z}_{p_k^{a_k}}.
\]
We can now state a stronger form of the classification theorem.

Theorem 16A.5 (Fundamental Theorem of Finite Abelian Groups, prime factors form). Let G be a finite abelian group with $|G| \geq 2$. Then there exist primes p_1, \ldots, p_k (NOT necessarily distinct) and $a_1, \ldots, a_k \in \mathbb{N}$ such that

$$G \cong \mathbb{Z}_{p_1^{a_1}} \times \ldots \times \mathbb{Z}_{p_k^{a_k}}.$$

Moreover, the sequence of prime powers $p_1^{a_1}, \ldots, p_k^{a_k}$ appearing in the above factorization is uniquely determined by G up to permutation.

The first (existence) part of Theorem 16A.5 is a consequence of Corollary 16A.4, Theorem 16A.2 and Lemma 16A.1. The moreover (uniqueness) part requires quite a bit of additional work which we will not discuss.

Theorem 16A.5 can be used to classify all finite abelian groups of any given order up to isomorphism. By **classifying up to isomorphism** we mean that given any $n \in \mathbb{N}$, we can write down a finite list of abelian groups of order n such that any two groups in the list are not isomorphic to each other and any abelian group of order n is isomorphic to some group on the list.

Example 3. Classify all abelian groups of order 48.

By Theorem 16A.5 the classification problem reduces to finding all ways to write 48 as a product of prime powers (where each prime power is assumed to be greater than 1 and the order in which prime powers appear does not matter). We have $48 = 2^4 \cdot 3^1$. There is no way to split 3^1, but 2^4 can be written as a product of powers of 2 in five different ways: $2^4 = 16$, $2^3 \cdot 2 = 8 \cdot 2$, $2^2 \cdot 2^2 = 4 \cdot 4$, $2^2 \cdot 2 \cdot 2 = 4 \cdot 2 \cdot 2$, and $2 \cdot 2 \cdot 2 \cdot 2$. The corresponding factorizations of 48 are $16 \cdot 3$, $8 \cdot 2 \cdot 3$, $4 \cdot 4 \cdot 3$, $4 \cdot 2 \cdot 2 \cdot 3$ and $2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$.

Thus, there are five abelian groups of order 48 up to isomorphism, namely $\mathbb{Z}_{16} \times \mathbb{Z}_3$, $\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_3$, $\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_3$, $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.

If we analyze where the number 5 came from in the above computation, we will see that it was completely determined by the exponents in the prime factorization of 48 (namely, 4 and 1) and not by the primes themselves. In general, the number of pairwise non-isomorphic abelian groups of order n can be expressed using the partition function.

Definition. Let $n \in \mathbb{N}$. A partition of n is a way to write n as a sum of positive integers where the order of summands does not matter. The number of distinct partitions of n is denoted by $p(n)$, and the function p is called the **partition function**.
For instance, \(p(1) = 1 \) (there is no way to split 1), \(p(2) = 2 \) (partitions of 2 are 2 itself and 1 + 1), \(p(3) = 3 \) (partitions of 3 are 3, 2 + 1 and 1 + 1 + 1) and \(p(4) = 5 \) (partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1). Based on this pattern, one may guess that the sequence \(p(2), p(3), p(4), \ldots \) is simply the sequence of all primes; however, this analogy only lasts up to \(p(6) = 11 \); the next value \(p(7) \) is 15, not 13.

Theorem 16A.6. Let \(n \geq 2 \) be an integer, and write \(n = p_1^{a_1} \ldots p_k^{a_k} \) where \(p_1, \ldots, p_k \) are distinct primes. Then the number of abelian groups of order \(n \) (up to isomorphism) is equal to \(\prod_{i=1}^{k} p(a_i) = p(a_1) \ldots p(a_k) \) where \(p \) is the partition function.

For instance, if \(n = 48 = 2^4 \cdot 3^1 \), we have \(k = 2, a_1 = 4 \) and \(a_2 = 1 \), so the number of groups of order 48 (up to isomorphism) is \(p(4)p(1) = 5 \cdot 1 = 5 \), which is consistent with the result of Example 3.

Proof. If we want to count the number of ways to write \(n = p_1^{a_1} \ldots p_k^{a_k} \) as a product of prime powers, we need to count the number of ways to split each of the powers \(p_i^{a_i} \) and then take the product of the obtained numbers. Writing \(p_i^{a_i} \) as a product of prime powers is equivalent to writing \(a_i \) as a sum of positive integers. Thus, the number of ways to write \(p_i^{a_i} \) as a product of prime powers is \(p(a_i) \), and the result follows. \(\square \)