16. HOMOMORPHISMS

16.1. Basic properties and some examples.

Definition. Let G and H be groups. A map $\varphi : G \to H$ is called a homomorphism if

$$\varphi(xy) = \varphi(x)\varphi(y) \text{ for all } x, y \in G.$$

Example 1. Let $G = (\mathbb{Z}, +)$ and $H = (\mathbb{Z}_n, +)$ for some $n > 1$. Define $\varphi : G \to H$ by $\varphi(x) = [x]$. Then φ is a homomorphism.

Since operation in both groups is addition, the equation that we need to check in this case is $\varphi(x + y) = \varphi(x) + \varphi(y)$. Verification is given below:

$$\varphi(x) + \varphi(y) = [x] + [y] = [x + y] = \varphi(x + y)$$

(where equality $[x] + [y] = [x + y]$ holds by definition of addition in \mathbb{Z}_n).

Example 2. Let F be a field, $n > 1$ and integer, $G = \text{GL}_n(F)$ and $H = (F \setminus \{0\}, \cdot)$. Define the map $\varphi(A) = \det(A)$.

In this example φ is a homomorphism thanks to the formula $\det(AB) = \det(A)\det(B)$. Note that while this formula holds for all matrices (not necessarily invertible ones), in the example we have to restrict ourselves to invertible matrices since the set $\text{Mat}_n(F)$ of all $n \times n$ matrices over F does not form a group with respect to multiplication.

Example 3. Unlike the situation with isomorphisms, for any two groups G and H there exists a homomorphism $\varphi : G \to H$, called the trivial homomorphism. It is given by $\varphi(x) = e_H$ for all $x \in G$ (where e_H is the identity element of H).

The following theorem shows that in addition to preserving group operation, homomorphisms must also preserve identity element and inversion.

Theorem 16.1. Let G and H be groups and $\varphi : G \to H$ a homomorphism. Then

(a) $\varphi(e_G) = e_H$ where e_G is the identity element of G and e_H is the identity element of H.

(b) $(\varphi(x))^{-1} = \varphi(x^{-1})$ for all $x \in G$.

Proof. (a) Since $e_G = e_G \cdot e_G$, we have $\varphi(e_G) = \varphi(e_G \cdot e_G) = \varphi(e_G) \cdot \varphi(e_G)$.

Multiplying both sides by $\varphi(e_G)^{-1}$ on the left (or on the right), we get $e_H = \varphi(e_G)$.

(b) We need to prove that \(\varphi(x^{-1}) \) is the inverse of \(\varphi(x) \) in \(H \). By Theorem 11.1(d) it suffices to show that \(\varphi(x^{-1}) \cdot \varphi(x) = e_H \) which follows from the result of (a): \(\varphi(x^{-1}) \cdot \varphi(x) = \varphi(x^{-1}x) = \varphi(e_G) = e_H \) where the last equality holds by (a).

Next we introduce two fundamental subgroups which can be associated to every homomorphism.

So let \(G \) and \(H \) be groups and \(\varphi : G \to H \) a homomorphism. The first subgroup associated to \(\varphi \) is the range (image) of \(\varphi \):

\[
\text{Range}(\varphi) = \varphi(G) = \{ h \in H : h = \varphi(g) \text{ for some } g \in G. \}
\]

From the definition it is clear that \(\varphi(G) \) is a subset of \(H \), but below we will show that it is actually a subgroup.

The second subgroup if the kernel of \(\varphi \), which is defined to be the set of all elements of \(G \) which get mapped to the identity element of \(H \) by \(\varphi \):

\[
\text{Ker}(\varphi) = \{ g \in G : \varphi(g) = e_H \}.
\]

Theorem 16.2. Let \(G \) and \(H \) be groups and \(\varphi : G \to H \) a homomorphism. Then

(a) \(\varphi(G) \) is a subgroup of \(H \)
(b) \(\text{Ker}(\varphi) \) is a subgroup of \(G \)

Proof. (a) First note that by Theorem 16.1(a) we have \(e_H = \varphi(e_G) \), so \(e_H \in \varphi(G) \).

Next we check that \(\varphi(G) \) is closed under group operation: take any \(u, v \in \varphi(G) \). By definition of \(\varphi(G) \) there exist \(x, y \in G \) such that \(u = \varphi(x) \) and \(v = \varphi(y) \). Hence \(uv = \varphi(x)\varphi(y) = \varphi(xy) \in \varphi(G) \).

Finally, we check that \(\varphi(G) \) is closed under inversion: take any \(u \in \varphi(G) \). Then \(u = \varphi(x) \) for some \(x \in G \), so \(u^{-1} = (\varphi(x))^{-1} = \varphi(x^{-1}) \in \varphi(G) \) where the second equality holds by Theorem 16.1(b).

(b) The proof for the kernel is rather similar. Again Theorem 16.1(a) implies that \(e_G \in \text{Ker}(\varphi) \).

Next take any \(x, y \in \text{Ker}(\varphi) \). Then \(\varphi(x) = \varphi(y) = e_H \), so \(\varphi(xy) = \varphi(x)\varphi(y) = e_H \cdot e_H = e_H \), so \(xy \in \text{Ker}(\varphi) \) as well. Thus, \(\text{Ker}(\varphi) \) is closed under group operation.

(c) Finally, for any \(x \in \text{Ker} \varphi \) we have \(\varphi(x) = e_H \), so by Theorem 16.1(b) we have \(\varphi(x^{-1}) = (\varphi(x))^{-1} = e_H^{-1} = e_H \), so \(x^{-1} \in \text{Ker}(\varphi) \). Hence \(\text{Ker}(\varphi) \) is closed under inversion.

Example 4. Let \(G = H = \langle \mathbb{Z}_{10}, + \rangle \), and define \(\varphi : G \to H \) by \(\varphi([x]) = 2[x] = [2x] \) for all \(x \in \mathbb{Z} \).
It is straightforward to check that \(\varphi \) is a homomorphism. The range of \(\varphi \) is \(\varphi(G) = \{ h \in H : h = [2x] \text{ for some } x \in \mathbb{Z} \} = \{ [0], [2], [4], [6], [8] \} = \{ [2] \} \).

The kernel of \(\varphi \) is \(\{ [x] \in G : [2x] = e_H \} = \{ [x] \in G : [2x] = [0] \} \). Since
\[[2x] = [0] \iff 2x = 10k \text{ for some } k \in \mathbb{Z} \iff x = 5k \text{ for some } k \in \mathbb{Z}. \]
Thus, \(\ker(\varphi) = \{ [5k] : k \in \mathbb{Z} \} = \langle [5] \rangle = \{ [0], [5] \} \).

The following theorem shows that one can check whether a homomorphism is injective simply by computing its kernel.

Theorem 16.3. Let \(G \) and \(H \) be groups and \(\varphi : G \to H \) a homomorphism. Then \(\varphi \) is injective if and only if \(\ker(\varphi) = \{ e_G \} \).

Proof. “\(\Rightarrow \)” Suppose \(\varphi \) is injective. We know that \(\varphi(e_G) = e_H \), so \(\ker(\varphi) \) contains \(e_G \), and if \(\ker(\varphi) \) contained another element besides \(e_G \), then \(\varphi \) would not be injective. Thus, \(\ker(\varphi) = \{ e_G \} \).

“\(\Leftarrow \)” We argue by contrapositive (if \(\varphi \) is not injective, then \(\ker(\varphi) \neq \{ e_G \} \)). Suppose \(\varphi \) is not injective, so there exist \(x \neq y \) in \(G \) with \(\varphi(x) = \varphi(y) \). Then \(\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1}) = \varphi(x)\varphi(y)^{-1} = e_H \), so \(xy^{-1} \) is an element of \(\ker(\varphi) \) different from \(e_G \). \(\square \)

16.2. Some analogies with linear algebra and Range-Kernel Theorem. The notions of group, homomorphism, range and kernel have direct analogues in linear algebra:

<table>
<thead>
<tr>
<th>group theory</th>
<th>linear algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>vector space</td>
</tr>
<tr>
<td>homomorphism</td>
<td>linear transformation</td>
</tr>
<tr>
<td>range of a homomorphism</td>
<td>range of a linear transformation</td>
</tr>
<tr>
<td>kernel of a homomorphism</td>
<td>nullspace of a linear transformation</td>
</tr>
</tbody>
</table>

One of the fundamental results in linear algebra is the rank-nullity theorem which asserts the following:

Rank-Nullity Theorem. Let \(F \) be a field, let \(V \) and \(W \) be finite-dimensional vector spaces over \(F \), and let \(T : V \to W \) be a linear transformation. Then
\[
\dim(\varphi(T)) + \dim(\text{Nullspace}(T)) = \dim(V)
\]
(The number \(\dim(\varphi(T)) \) is called the rank of \(T \) and the number \(\dim(\text{Nullspace}(T)) \) is called the nullity of \(T \), so the theorem says that the sum of the rank of \(T \) and the nullity of \(T \) is equal to the dimension of the vector space on which \(T \) is defined).

The following theorem, which we call the Range-Kernel Theorem, is a group-theoretic analogue of rank-nullity theorem.
Theorem 16.4 (Range-Kernel Theorem). Let G and H be finite groups and $\varphi : G \to H$ a homomorphism. Then

$$|\varphi(G)| \cdot |\text{Ker}(\varphi)| = |G|.$$

In Example 4 we have $|G| = 10$, $|\varphi(G)| = 5$ and $|\text{Ker}(\varphi)| = 2$.

We finish this lecture with an example showing how the Range-Kernel Theorem can be used to compute the order of some group.

Problem 16.5. Let p be a prime. Compute the order of the group $|SL_2(\mathbb{Z}_p)|$.

We will solve this problem in two steps. First we will compute $|GL_2(\mathbb{Z}_p)|$ and then use the Range-Kernel Theorem to compute $|SL_2(\mathbb{Z}_p)|$.

Step 1: By definition $GL_2(\mathbb{Z}_p) = \{A \in \text{Mat}_2(\mathbb{Z}_p) : \det(A) \neq [0]\}$.

By a theorem from linear algebra, $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq [0] \iff$ the vectors (a, b) and (c, d) are not proportional (that is, are not multiples of each other). Using this observation, we can count the number of ways to choose a 2×2 invertible matrix with entries in \mathbb{Z}_p.

The first row of a matrix in $GL_2(\mathbb{Z}_p)$ can be any vector of length 2 except $(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix})$, so there are $p^2 - 1$ choices for the first row. Once the first row (a, b) is chosen, the second row can be any vector which is not a scalar multiple of (a, b). Since any nonzero vector with entries in \mathbb{Z}_p has precisely p distinct multiples, there are $p^2 - p$ choices for the second row. Overall we have $(p^2 - 1)(p^2 - p)$ choices, so $|GL_2(\mathbb{Z}_p)| = (p^2 - 1)(p^2 - p) = (p - 1)^2 p(p + 1)$.

Step 2: By Example 2, the map $\varphi : GL_2(\mathbb{Z}_p) \to \mathbb{Z}_p \setminus \{[0]\}$ given by $\varphi(A) = \det(A)$, is a homomorphism.

The range of φ is the entire group $\mathbb{Z}_p \setminus \{[0]\}$ since every nonzero $a \in \mathbb{Z}_p$ is the determinant of some 2×2 matrix: $a = \det \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. The kernel of φ is the set $\{A \in GL_2(\mathbb{Z}_p) : \det(A) = [1]\}$ which is precisely $SL_2(\mathbb{Z}_p)$. Therefore, by the Range-Kernel Theorem we have

$$|SL_2(\mathbb{Z}_p)| = |\text{Ker}(\varphi)| = \frac{|G|}{|\varphi(G)|} = \frac{|GL_2(\mathbb{Z}_p)|}{|\mathbb{Z}_p \setminus \{[0]\}|} = \frac{(p - 1)^2 p(p + 1)}{p - 1} = (p - 1)p(p + 1).$$

16.3. **Book references.** The general references for this lecture are [Pinter, Chapter 14] and [Gilbert, 3.6].