Homework #1. Due on Thursday, September 1st in class

Reading:
1. For this assignment: Online lectures 1, 2 and the beginning of 3.
2. For next week’s classes: Online lectures 3, 4 and 5 and Sections 1.1 and 1.2 of the book.

Online lectures are currently posted on last semester’s webpage

http://people.virginia.edu/~mve2x/3354_Spring2016

Problems:

Problem 1: Let \(R \) be a commutative ring with 1. Prove the following equalities using only the ring axioms and results proved in class or online lectures.

(a) \((-xy) = (-x)y\) for all \(x, y \in R \)
(b) \((-1)(-1) = 1\)
(c) \((-x)(-y) = xy\) for all \(x, y \in R \)
(d) \(x(y - z) = xy - xz\) for all \(x, y, z \in R \)

Hint: Additive cancellation law (proved in lecture 1) can be used to solve many questions of this type as follows. Suppose that we want to prove inequality of the form \(a = b \). By additive cancellation law, if we prove that \(a + c = b + c \) for some \(c \in R \), we can conclude that \(a = b \). Note that the implication would work for any \(c \), so \(c \) is for us to choose. The idea is to choose \(c \) in such a way that both expressions \(a + c \) and \(b + c \) can be simplified (using ring axioms) so that after simplification it becomes easy to prove that \(a + c = b + c \).

Recall that by definition \(x - y = x + (-y) \).

Problem 2: Let \(F \) be a field, and suppose that \(xy = 0 \) for some \(x, y \in F \). Prove that \(x = 0 \) or \(y = 0 \). **Hint:** Consider two cases: \(x = 0 \) (in this case there is nothing to prove) and \(x \neq 0 \). Recall that in a field every nonzero element has multiplicative inverse.

Note: If \(F \) was only assumed to be a commutative ring with unity, the above assertion would have been false in general. Can you think of an example?

Problem 3: Let \(R \) be an ordered ring and \(x, y, z \in R \). Prove that

(a) If \(x > y \), then \(x + z > y + z \)
(b) If \(x > y \) and \(z > 0 \), then \(xz > yz \)
(c) If \(x > y \) and \(z < 0 \), then \(xz < yz \)
Note: You may use freely standard properties of ring operations (addition, subtraction and multiplication). However, all statement involving inequalities must be deduced directly from the axioms.

Problem 4: Prove by induction that the following equalities hold for any \(n \in \mathbb{N} \):

(a) \(1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)

(b) \(a + ar + ar^2 + \ldots + ar^{n-1} = a \frac{1-r^n}{1-r} \) where \(a, r \in \mathbb{R} \) and \(r \neq 1 \)

Problem 5: Consider the following “proof” by induction: For each \(n \in \mathbb{N} \) let \(P(n) \) be the statement

\[\sum_{i=0}^{n} 2^i = 2^{n+1}. \] (***)

Claim: \(P(n) \) is true for all \(n \in \mathbb{N} \).

Proof: “\(P(n-1) \Rightarrow P(n) \).” Assume that \(P(n-1) \) is true for some \(n \in \mathbb{N} \). Then \(\sum_{i=0}^{n-1} 2^i = 2^n \). Adding \(2^n \) to both sides, we get \(\sum_{i=0}^{n} 2^i = 2^n + 2^n \), whence \(\sum_{i=0}^{n} 2^i = 2^{n+1} \), which is precisely \(P(n) \). Thus, \(P(n) \) is true.

By the principle of mathematical induction, \(P(n) \) is true for all \(n \). \(\square \)

(a) Show that the statement \(P(n) \) is false (it is actually false for any \(n \)).

(b) Explain why the above “proof” does not contradict the principle of mathematical induction, that is, find a mistake in the above “proof” (Hint: the mistake is in the general logic).

Problem 6: In online lecture 3 it is proved that for every \(n \in \mathbb{N} \) there exist \(a_n, b_n \in \mathbb{Z} \) such that \((1 + \sqrt{2})^n = a_n + b_n \sqrt{2} \). Moreover, it is shown that such \(a_n \) and \(b_n \) satisfy the following recursive relations: \(a_1 = b_1 = 1 \) and \(a_{n+1} = a_n + 2b_n, b_{n+1} = a_n + b_n \) for all \(n \in \mathbb{N} \).

(a) Use the above recursive formulas and mathematical induction to prove that \(a_n^2 - 2b_n^2 = (-1)^n \) for all \(n \in \mathbb{N} \).

(b) Prove that for all \(n \in \mathbb{N} \) there exist \(c_n, d_n \in \mathbb{Z} \) such that \((1 + \sqrt{3})^n = c_n + d_n \sqrt{3} \).

(c) (bonus) Find a simple formula relating \(c_n \) and \(d_n \) (similar to the one in (a)) and prove it.