Lab 5 – CAPACITORS & RC CIRCUITS

OBJECTIVES

- To define capacitance and to learn to measure it with a digital multimeter.
- To explore how the capacitance of conducting parallel plates is related to the area of the plates and the separation between them.
- To explore the effect of connecting a capacitor in a circuit in series with a resistor or bulb and a voltage source.
- To explore how the charge on a capacitor and the current through it change with time in a circuit containing a capacitor, a resistor and a voltage source.

OVERVIEW

Capacitors are widely used in electronic circuits where it is important to store charge and/or energy or to trigger a timed electrical event. For example, circuits with capacitors are designed to do such diverse things as setting the flashing rate of Christmas lights, selecting what station a radio picks up, and storing electrical energy to run an electronic flash unit. Any pair of conductors that can be charged electrically so that one conductor has positive charge and the other conductor has an equal amount of negative charge on it is called a capacitor.

A capacitor can be made up of two arbitrarily shaped blobs of metal or it can have any number of regular symmetric shapes such as one hollow metal sphere inside another, or a metal rod inside a hollow metal cylinder.

Figure 1-1: Some different capacitor geometries
The type of capacitor that is the easiest to analyze is the parallel plate capacitor. We will focus exclusively on these.

Although many of the most interesting properties of capacitors come in the operation of AC (alternating current) circuits (where current first moves in one direction and then in the other), we will limit our present study to the behavior of capacitors in DC (direct current) circuits.

The circuit symbol for a capacitor is a simple pair of lines as shown in Figure 1-2. Note that it is similar to the symbol for a battery, except that both parallel lines are the same length for the capacitor.

![Figure 1-2: The circuit diagram symbol for a capacitor](image)

In Investigation 1 we will measure the dependence of capacitance on area and separation distance. In Investigation 2 we shall learn how capacitances react when charge builds up on their two surfaces. We will investigate what happens to this charge when the voltage source is removed and taken out of the circuit.

INVESTIGATION 1: CAPACITANCE, AREA AND SEPARATION

The usual method for transferring equal and opposite charges to the plates of a capacitor is to use a battery or power supply to produce a potential difference between the two conductors. Electrons will then flow from one conductor (leaving a net positive charge) and to the other (making its net charge negative) until the potential difference produced between the two conductors is equal to that of the battery. (See Figure 1-3.)

In general, the amount of charge needed to produce a potential difference equal to that of the battery will depend on the size, shape, location of the conductors relative to each other, and the properties of the material between the conductors. The capacitance of a given capacitor is defined as the ratio of the magnitude of the charge, \(q\) (on either one of the conductors) to the voltage (potential difference), \(V\), applied across the two conductor:

\[
C \equiv \frac{q}{V}
\]

(1)
Activity 1-1: Predicting the Dependence of Capacitance on Area and Separation.

Consider two identical metal plates of area A that are separated by a distance d. The space between the plates is filled with a non-conducting material (air, for instance). Suppose each plate is connected to one of the terminals of a battery.

Prediction 1-1: Suppose you now double the area of each plate. Does the voltage between the plates change (recall that the plates are still connected to the battery)? Does the amount of charge on each plate change? Since $C = q/V$, how must the capacitance change?

$A = \text{area}$
$V = \text{voltage}$
$d = \text{separation}$
Prediction 1-2: Now return to the original capacitor. The easiest way to reason the dependence of capacitance on separation distance is to charge the plates first and then disconnect the battery. After we do that, the separation distance is doubled. Can the charge on the plates change? Does the electric field between the plates change (assume ideal conditions: plates large compared to separation distance)? How does the voltage between the plates change? Since $C = q/V$, how must the capacitance change?

The unit of capacitance is the farad, F, named after Michael Faraday. One farad is equal to one coulomb/volt. As you should be able to demonstrate to yourself shortly, the farad is a very large capacitance. Thus, actual capacitances are often expressed in smaller units with alternate notation as shown below:

- micro farad: $1 \mu F = 10^{-6} F$
- nano farad: $1 nF = 10^{-9} F$
- pico farad: $1 pF = 10^{-12} F$

[Note that m, µ, and U when written on a capacitor all stand for a multiplier of 10^{-6}.]

There are several types of capacitors typically used in electronic circuits including disk capacitors, foil capacitors, electrolytic capacitors and so on. You should examine some typical capacitors. There should be a collection of such old capacitors at the front of the room.

To complete the next few activities you will need to construct a parallel plate capacitor and use a multimeter to measure capacitance.

You'll need the following items:
- A “fat” UVa directory
- two sheets of aluminum foil about the size of a directory page
- one or several massive objects (e.g., catalogs)
- digital multimeter with a capacitance mode and clip leads
• ruler with a centimeter scale
• digital calipers

You can construct a parallel plate capacitor out of two rectangular sheets of aluminum foil separated by pieces of paper. Pages in the UVa directory work quite well as the separator for the foil sheets. You can slip the two foil sheets on either side of paper sheets, and weigh the book down with something heavy like some textbooks. The digital multimeter can be used to measure the capacitance of your capacitor.

Activity 1-2: Measuring How Capacitance Depends on Area or on Separation

Be sure that you understand how to use the multimeter to measure capacitance and how to connect a capacitor to it. If you are **sitting at an even numbered table**, then you will devise a way to measure how the capacitance depends on the foil area. If **sitting at an odd numbered table** then you will devise a way to measure how the capacitance depends on the separation between foils. Of course, you must keep the other variable (separation or area) constant.

When you measure the capacitance of your “parallel plates”, be sure that the aluminum foil pieces are pressed together as uniformly as possible (mash them hard!) and that they don't make electrical contact with each other. We suggest you cut the aluminum foil so it does not stick out past the pages except where you make the connections as shown in Figure 1-4. Notice the connection tabs are offset.

![Figure 1-4](image_url)

Hint: To accurately determine the separation distance, simply count the number of sheets and multiply by the nominal thickness of a single sheet. To determine the nominal sheet thickness, use the caliper to measure the thickness of 100 or more “mashed” sheets and divide by the number of sheets.
[Note: If you use the page numbers to help with the counting, don’t forget that there are two numbered pages per sheet!]

If you are keeping the separation constant, a good separation to use is about five sheets. The area may be varied by using different size sheets of aluminum foil. Alternatively, simply slide one sheet out of the book. Make sure you accurately estimate the area of overlap.

If you are keeping the area constant, use a fairly large area – almost as large as the telephone/directory book you are given. A good range of sheets to use for the separation is one to twenty.

Important: When you measure C with the multimeter, be sure to subtract the capacitance of the leads (the reading just before you clip the leads onto the aluminum sheets).

1. Take five data points in either case. Record your data in Table 1-1.

Table 1-1

<table>
<thead>
<tr>
<th>Separation</th>
<th>Capacitance (nF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sheets</td>
<td>Length (mm)</td>
</tr>
<tr>
<td>Thickness (µm)</td>
<td></td>
</tr>
</tbody>
</table>

2. After you have collected all of your data, open the experiment file **L05A1-2 Dependence of C**. Enter your data for capacitance and either separation or area from Table 1-1 into the table in the software. Be sure there is no “zero” entry in the case of C vs. separation distance. Graph capacitance vs. either separation or area.

3. If your graph looks like a straight line, use the fit routine in the software to find its equation. If not, you should try other functional relationships until you find the best fit.
Question 1-1: What is the function that best describes the relationship between separation and capacitance or between area and capacitance? How do your results compare with your prediction based on physical reasoning?

Question 1-2: What difficulties did you encounter in making accurate measurements?

The actual mathematical expression for the capacitance of a parallel plate capacitor of plate area A and plate separation d is derived in your textbook. The result is

$$C = \kappa \varepsilon_0 \frac{A}{d}$$

(2)

where

$$\varepsilon_0 = 8.85 \text{pF/m}$$

and κ is the dimensionless dielectric constant.

Question 1-3: Do your predictions and/or observations on the variation of capacitance with plate area and separation seem to agree qualitatively with this result?
Question 1-4: Use one of your actual areas and separations to calculate a value of κ using this equation. Show your calculations. What value of the dielectric constant of paper do you determine? (The actual dielectric constant varies considerably depending on what is in the paper and how it was processed.) Typical values range from 1.5 to 6.

κ ______________________

INVESTIGATION 2: CHARGE BUILDUP AND DECAY IN CAPACITORS

Capacitors can be connected with other circuit elements. When they are connected in circuits with resistors, some interesting things happen. In this investigation you will explore what happens to the voltage across a capacitor when it is placed in series with a resistor in a direct current circuit.

You will need:

- one current and one voltage probe
- 6 V battery
- #133 flashlight bulb and socket (on RLC board)
- electrolytic capacitor (~23,000 μF)
- six alligator clip wires
- single pole, double throw switch
- RLC circuit board

You can first use a bulb in series with an “ultra capacitor” with very large capacitance (> 0.02 F!). These will allow you to see what happens. Then later on, to obtain more quantitative results, the bulb will be replaced by a resistor.

Activity 2-1: Observations with a Capacitor, Battery and Bulb

1. Set up the circuit shown in Figure 2-1 using the 23,000 μF capacitor.

Be sure that the positive and negative terminals of the capacitor are connected correctly! Because of the chemistry of their dielectric, electrolytic capacitors have a definite polarity. If hooked up backwards, it will behave like a bad capacitor in parallel with a bad resistor.
Question 2-1: Sketch the complete circuit when the switch is in position 1 and when it is in position 2. For clarity, don’t draw components or wires that aren’t contributing to the function of the circuit.

2. Move the switch to position 2. After several seconds, switch it to position 1, and describe what happens to the brightness of the bulb.

Question 2-2: Draw a sketch on the axes below of the approximate brightness of the bulb as a function of time for the above case of moving the switch to position 1 after it has been in position 2. Let \(t = 0 \) be the time when the switch was moved to position 1.

3. Now move the switch back to position 2. Describe what happens to the bulb. Did the bulb light again without the battery in the circuit?

Question 2-3: Draw a sketch on the axes below of the approximate brightness of the bulb as a function of time when
it is placed across a charged capacitor without the battery present, i.e. when the switch is moved to position 2 after being in position 1 for several seconds. Let \(t = 0 \) be when the switch is moved to position 2.

![Brightness vs. Time Graph](image)

Question 2-4: Discuss why the bulb behaves in this way. Is there charge on the capacitor after the switch is in position 1 for a while? What happens to this charge when the switch is moved back to position 2?

4. Open the experiment file **L05A2-1 Capacitor Decay**, and display \(V_{PB} \) and \(C_{PA} \) versus time.

5. Connect the probes in the circuit as in Figure 2-2 to measure the current through the light bulb and the potential difference across the capacitor.

![Circuit Diagram](image)

Figure 2-2

6. Move the switch to position 2.

7. After ten seconds or so, **begin graphing**. When the graph lines appear, move the switch to position 1. When the current and voltage stop changing, move the switch back to position 2.

8. **Print** out one set of graphs for your group.
9. Indicate on the graphs the times when the switch was moved from position 2 to position 1, and when it was moved back to position 2 again.

Question 2-5: Does the actual behavior over time observed on the current graph agree with your sketches in Questions 2-2 and 2-3? How does the brightness of the bulb depend on the direction and magnitude of the current through it?

Question 2-6: Based on the graph of potential difference across the capacitor, explain why the bulb lights when the switch is moved from position 1 to position 2 (when the bulb is connected to the capacitor with no battery in the circuit)?

Activity 2-2: The Rise of Voltage in an RC Circuit

We will now look at a circuit which we can quantitatively analyze. A light bulb, as we have seen, has a very non-linear relationship between the applied voltage and the current through it. A resistor, on the other hand, obeys Ohm’s Law: the voltage across a resistor is proportional to the current through the resistor. Similarly, the voltage across a capacitor is proportion to the charge on the capacitor.

Consider Figure 2-3 (the same as Figure 2-1, but with the bulb replaced by a resistor). We will assume that the switch has been in position 2 “for a very long time” so that the capacitor is fully discharged. [We will soon get a sense of how long one must wait for it to be “very long”].

Diagram:

![Diagram of an RC Circuit](image)
We have seen that when the capacitor is fully discharged, there will be no current flowing in the circuit.

\[
\begin{align*}
\text{V} & \quad + \quad \text{–} \\
+ & \quad \text{–} \\
\text{R} & \quad \text{–} \\
\text{C} &
\end{align*}
\]

Figure 2-3

Now we consider what happens when we move the switch to position 1. From Kirchoff’s Junction Rule (charge conservation), we can see that any current that flows through the capacitor also flows through the resistor and the battery (they are in series):

\[I_{\text{capacitor}} = I_{\text{resistor}} = I_{\text{battery}}\] \hspace{1cm} (1)

From Kirchoff’s Loop Rule (energy conservation), we see that the voltage drop across the resistor plus the voltage drop across the capacitor is equal to the voltage rise across the battery:

\[V_{\text{resistor}} + V_{\text{capacitor}} = I_{\text{resistor}}R + q_{\text{capacitor}}/C = V_{\text{battery}}\] \hspace{1cm} (2)

As \(I = dq/dt \), we have a simple differential equation:

\[Rdq/dt + q/C = V_{\text{battery}}\] \hspace{1cm} (3)

Integrating this yields:

\[q(t) = CV_{\text{battery}} \left(1 - e^{-t/RC}\right)\] \hspace{1cm} (4)

Finally, the voltage across the capacitor (which we can measure) will be given by:

\[V_{\text{capacitor}}(t) = V_{\text{battery}} \left(1 - e^{-t/RC}\right)\] \hspace{1cm} (5)

Now we can see what “a long time” means. As the argument of the exponential function is unitless, the quantity \(RC \) must have units of time. \(RC \) is called the time constant of the circuit.

Initially, at \(t = 0 \), there is no charge on the capacitor and all of the battery’s voltage will be across the resistor. A current (equal to \(V/R \)) will then flow, charging the capacitor.

As the capacitor charges, the voltage across the capacitor will increase while that across the resistor will decrease. For times short relative to \(RC \), the charge on the capacitor will increase essentially linearly\(^1\) with respect to time.

\[1 - e^{-x} \approx x, \text{ for } x \ll 1.\]
As the capacitor charges, however, the voltage across it will increase, forcing the voltage across the resistor to decrease. This means that the current will also decrease, which will lead to a drop in the rate of charging. Asymptotically (for times large relative to RC), the capacitor’s voltage will approach the battery’s voltage and there will be no further current flow.

1. Open the experiment file **L05A2-2 RC Circuit**. This will take data at a much higher rate than before, and will allow us to graph the charging of the capacitor, using a smaller C which we can readily measure with the multimeter.

2. Replace the light bulb in your circuit (Figure 2-2) with a 100Ω resistor, and the large capacitor with one in the $80 \mu F$ to $120 \mu F$ range. [Use the RLC circuit board.] Move the switch to position 2.

3. **Begin graphing** and immediately move the switch to position 1. Data taking will start when the switch is moved and cease automatically.

 NOTE: DataStudio is configured in this activity to start taking data when the voltage sensed by V_{PB} starts rising. Make sure that you have hooked the probes up correctly or it won’t start.

4. You should see an exponential curve which, for the charging of the capacitor, is:

 $$V(t) = V_f \left(1 - e^{-t/RC}\right)$$

 Use the **Smart Tool** to determine from your graph the *time constant* (the time for the voltage across the capacitor to reach 63% [actually $1 - 1/e$] of its final value – after the switch is moved to position 1). Record your data below. [Don’t forget units!]

 Final voltage:

 63% of final voltage:

 Time constant:
5. Convince yourself from the equation above that the time constant must equal exactly RC. **Remove the components from the circuit** and then measure R and C with the multimeter and calculate RC. [Don’t forget units!]

R:_______

C:_______

RC:_______

Question 2-7: Discuss the agreement between the measured time constant and RC.

Agreement (%): ______________

6. Now you can use the software to fit an “Inverse Exponent Fit” to your data. Choose the range of times that you want to fit. The data box should already be present on your voltage graph. Look at the root mean square error. It should be much less than one.

Equation of curve fit:

Parameters for a good fit:

7. **Print** one set of graphs for your group.
Question 2-8: What is the physical significance of the parameters “A”, “B”, and “C” in your fit?

Question 2-9: Calculate the time constant from your fit, and compare to what you found from your measured values of R and C. Discuss the agreement.

Parameter(s): ________________________

Calculation of time constant from parameter(s):

Calculated RC (from step 5): _____________

Agreement (%): ________________