Lecture 7

Phase transitions

Last time, developed Clausius-Clapeyron relation

\[P \begin{array}{c}
I \\
\text{I} \\
\text{II} \\
\text{II}
\end{array} \]

\[P_{co}(T) \]

\[\left(\frac{\partial P}{\partial T} \right)_{coex} = \frac{\Delta H}{T \Delta V} = \frac{L}{T \Delta V} \]

\[\Delta H = \text{enthalpy of transition} \]

\[= \text{heat that must be added to system to drive all particles from I to II} \]

\[= H_{II} - H_{I} \]

\[\Delta V = V_{II} - V_{I} = \text{difference in volume for all particles in state II vs state I (at this P+T)} \]

Here \(N \)

\[= \text{total # of particles} \]

\[= N_{I} + N_{II} \]

\[\begin{align*}
L & = \frac{\Delta H}{N} = \text{latent heat} \\
\nu & = \frac{\Delta V}{N} = \text{difference in volume/particle between phases} \\
\end{align*} \]

\[L \approx \text{specific volume} \]

This is for \(P=0 \) system

More generally,

\[\left(\frac{\partial V}{\partial T} \right)_{P=0} = -\frac{\Delta H}{T \Delta X} \]

But if \(\text{II is a gas} \), \(I = \text{solid or liquid} \)

...
First, expect \(V_\Pi \gg V_\frac{1}{2} \)

so \(\Delta V = V_\Pi \quad \Delta V \approx V_\Pi \)

Also, if gas is close to ideal, \(V_\Pi \approx \frac{NkT}{p} \)

So \(\left(\frac{dp}{dT} \right)_{co} = \frac{PL}{kT^2} \)

Integrate: \(\frac{dp}{p} = \frac{L}{k} \frac{dT}{T^3} \)

\(\ln p = -\frac{L}{k} \frac{1}{T} + \text{const} \)

\[P(T) = P_0 e^{-\frac{L}{kT}} \]

Gives vapor pressure of phase I
- exp. dependence on \(T \)

Breaks down near critical point:

\(L \) depends on \(T \)
\(\to 0 \) as \(T \to T_c \)

Also \(\Delta V \to 0 \) too

So can say a fair bit about \(P/T \) relation
But can use other variables too:

Diagram in P-V plane:

For given $P \neq P_c$, could have liquid at low V, gas at high V

or mixture in between

Add isotherms:

For $T > T_c$, approximately ideal gas

For $T < T_c$, move from liquid to gas at const P,T

$\Rightarrow V$ no longer determined by P,T!

So how is V determined?
Depends on fraction of particles in two phases

Relation is straightforward:

Define \(x_l = \frac{N_l}{Z} \), \(x_g = \frac{N_g}{N} \) : mole fractions

(liquid) \hspace{2cm} (gas)

Phases have specific volumes \(V_l, V_g \)

(These have to come from eqn of state)

Then \(V_{\text{total}} = V_l + V_g \)

\[= N_l V_l + N_g V_g \]

\[= N x_l V_l + N x_g V_g \]

Or \(\frac{V_{\text{total}}}{N} = x_l V_l + x_g V_g \)

So given \(x_l, x_g \), get \(V \)

Or given \(V \), solve for

\[x_l = \frac{V_g - V}{\Delta V} \]

\[x_g = 1 - x_l = \frac{V - V_l}{\Delta V} \]

\(\Delta V = V_g - V_l \)

If not given \(x \) or \(V \), not enough information to specify system.
To go further, need eqn of state.

Ideal gas has no phase transition. Consider van der Waals gas.

In terms of specific volume, \((P + \frac{a}{v^2})(v-b) = kT\)

or \(Pv^3 - (Pb+kT)v^2 + av - ba = 0\)

cubic eqn in \(v\): expect 3 roots for given \(P, T\)

But often only one is real.

Plot \(P\) vs \(v\), various \(T\).

For \(T<T_c\) and \(P<P_c\), see 3 possible \(v\)'s for each \((P, T)\).

Above \(P_c\) or \(T_c\), only one solution.

See that at critical point, \(\left(\frac{\partial P}{\partial v}\right)_T = 0 = \left(\frac{\partial^2 P}{\partial v^2}\right)_T\)

Use this to find \(T_c, P_c\).
\[P = \frac{kT}{u-b} - \frac{a}{u^2} \]

\[
\left(\frac{\partial P}{\partial u} \right)_T = - \frac{kT}{(u-b)^2} + \frac{2a}{u^3} = 0 \Rightarrow \frac{u^3}{(u-b)^2} = \frac{2a}{kT}
\]

\[
\left(\frac{\partial^2 P}{\partial u^2} \right)_T = \frac{2kT}{(u-b)^3} - \frac{6a}{u^4} = 0 \Rightarrow \frac{u^4}{(u-b)^3} = \frac{3a}{kT}
\]

Divide:
\[
\frac{u}{u-b} = \frac{3}{2}
\]

\[2u = 3u - 3b \Rightarrow u_c = 3b \]

\[kT_c = 2a \cdot \frac{(u-b)^2}{u^3} = 2a \cdot \frac{(2b)^2}{(3b)^3} \]

\[kT_c = \frac{8a}{27b} \]

and
\[P_c = \frac{kT_c}{u_b} - \frac{a}{u^2} = \left(\frac{8a}{27b} \right) \frac{1}{2b} - \frac{a}{b^2} \]

\[= \frac{a}{b^2} \left(\frac{4}{27} - \frac{2}{27} \right) \]

\[P_c = \frac{1}{27} \frac{a}{b^2} \]

Can rewrite eqn of state in terms of \(\bar{P} = \frac{P}{P_c} \), etc.

Get
\[(\bar{P} + \frac{3}{u^2})(3\bar{u} - 1) = 8\bar{T} \]

\[\Rightarrow a \& b \text{ drop out!} \]

All van der Walls gases are equivalent in reduced units.

True to good approximation for most real gases
Now, for $T < T_c$ have P

Have region where $\frac{d\rho}{d\nu} > 0$

\Rightarrow Unstable:

Suppose small element of fluid δU increased

Then P in that element would increase

\Rightarrow cause size to increase further

Expansion runs away

\Rightarrow form bubble in liquid

Similarly if δU decreases, P goes down

\Rightarrow form droplet in vapor

So curve as drawn isn't really right

Should be:

P

P_{cc}

pure liquid

coexistence

metastable states

pure gas

P remains constant in coexistence region
But how do we know where to draw line?

Use method called Maxwell construction

Know that in equilibrium, G is minimized

$$dG = -SdT + UdT$$

On isotherm, $dT = 0$, so

$$G = \int_{T_{\text{fixed}}}^{T} \mu dT$$

Draw $U(P)$:

Between 2 & 6, G is multivalued

But want smallest possible value
So observe

\[G \]

\[\rho \]

Location of 2 & 6 determined by \(G(2) = G(6) \)

\[G(6) - G(2) = \int_{P_2}^{P_6} U \, dP = 0 \]

= area enclosed

\[U \]

Can't solve analytically, but can integrate numerically to locate transition points

Summary: For given \(T \), find onset of transition by locating points in liquid + gas states where \(G(P, \text{V}_L) = G(P, \text{V}_g) \)

Can locate points by equalizing area enclosed by coexistence line & eqn of state