WEIGHTED ESTIMATES FOR THE VARIATION-NORM CARLESON OPERATOR VIA SPARSE FORM DOMINATION

FRANCESCO DI PLINIO, YEN DO, AND GENNADY URALTSEV

Abstract. We prove a sparse form domination for the bilinear form associated with the variation-norm Carleson operator and deduce weighted estimates for this operator, improving on a prior result of the second author and Lacey [4].

1. Introduction

Let $r > 2$. In this note we prove weighted estimates for

$$C_r f(x) = \sup_{K, N_0 < \cdots < N_K} \left| \sum_{j=1}^{K} \int_{N_{j-1}}^{N_j} e^{ix\xi} \hat{f}(\xi) d\xi \right|^{r/2}$$

(known as the variation-norm Carleson operator), improving on a prior result of the second author with Lacey [4]. Our method of proof is different from [4], here we will deduce the estimates from a new sparse form estimate for $\langle C_r f, g \rangle$.

(In particular we don’t need to use interpolation as in prior works [4, 12].) Note that the simpler case $r = \infty$ corresponds to the classical Carleson operator whose boundedness implies a.e. convergence of the Fourier series, see e.g. [7, 8, 3]. Our consideration uses the sparse domination approach of Lacey [9] and Lerner [10] (cf. [11]), more specifically we follow the adaptation in Culiuc-Di Plinio-Ou [1] where the authors proved sparse domination for the trilinear form associated with the bilinear Hilbert transform and obtain weighted estimates for this operator.

Our main theorem is the following

Theorem 1.1. Let $w \in A_q$ some $q \geq 1$, and let $r > \max(2, \frac{p}{p-q})$. Then $C_r f$ maps $L^p(w)$ into itself.

(Transference of this estimate to Fourier series is discussed in [3].) Theorem 1.1 improves the lower bound assumed on r in a previous result of the second author and Lacey [4], where $r > \max(2q, \frac{pq}{p-q})$. Theorem 1.1 is a consequence of the following sparse domination result. To state this result we first fix several notations.

Let $0 < \alpha < 1$. By a α-sparse collection S we mean a collection of (shifted) dyadic intervals I such that there exists E_I such that $(E_I)_{I \in S}$ are disjoint and $|E_I| \geq \alpha |I|$. For any f let $(f)_I$ denote the average $\frac{1}{|I|} \int_I |f|$ and more generally $(f)_{I,p} = \left(\int_I |f|^p \right)^{1/p}$. Below is the sparse domination for $\langle C_r f, g \rangle$:

Date: May 27, 2016.

2000 Mathematics Subject Classification. 42B20.

Y. D. partially supported by NSF grant DMS-1521293.
Theorem 1.2. For any \(\alpha \in (0, 1) \) and any Schwartz functions \(f \) and \(g \) there is an \(\alpha \)-sparse collection \(S \) such that for any \(q > r' \)
\[
\langle C_{r'} f, g \rangle \leq \Lambda_S(f, g) := \sum_{I \in S} |I| (f)_{3L,q}(g)_{3L,1}
\]

1.1. Deducing weighted estimates from sparse domination. To demonstrate the idea, we first deduce the (unweighted) \(L^p \) estimates for \(C_{r'} \) in \(L^p \) in the range \(p > r' \) (as proved by Oberlin et al. \cite{12}) from sparse domination and the Hardy-Littlewood maximal theorem:
\[
\langle C_{r'} f, g \rangle \leq \sum_{I \in S} |E_I| \inf_{x \in I} M_{r' + \epsilon} f(x) M g(x)
\]
then, by choosing \(\epsilon > 0 \) such that \(p > r' + \epsilon \).

We now deduce Theorem 1.1 from the above sparse domination estimate. Recall \(w \in \mathcal{A}_q \), we let \(t = p/q \). Then \(p > t > r' \) thanks to the given hypothesis on \(r \). Let \(\sigma = w^{1-p'} \in \mathcal{A}_{p'} \). Then using sparse domination as above we get
\[
\langle C_{r'} (f \sigma), gw \rangle \leq \| M_t (f \sigma) M(gw) \|_1
\]
by choosing \(\epsilon > 0 \) such that \(p > r' + \epsilon \).

Acknowledgement: The second author would like to thank Michael Lacey for useful conversations about sparse domination.

2. Outline of the Proof

For simplicity of notation we will show Theorem 1.2 for \(\alpha = 1/2 \), the general case is entirely similar. Also since \(r' < 2 \) and using monotonicity of \(L^q \) averages we may assume without loss of generality that \(q < 2 \).

To show Theorem 1.2 we discretize \(C_{r'} f \) using the argument of Oberlin et. al., and \(\langle C_{r'} f, g \rangle \) becomes a finite linear combination of discrete Carleson operators
\[
\sum_{P \in \mathcal{P}} |I| \langle f, \phi_p \rangle \langle \tilde{\phi}_p a_p, g \rangle
\]
where \(\langle \phi_p \rangle \) is a collection of Fourier wave packets that are \(L^1 \) normalized (see later sections for background), and \(\tilde{\phi}_p \) is a frequency truncated version of \(\phi_p \) that arises from the \(r \)-variation norm, which we will also define later.

Let \(r > 2 \). Then it is proved in \cite{5} that the projection \(f \mapsto \langle f, \tilde{\phi}_p \rangle \) maps \(L^p(\mathbb{R}, w) \) into \(\mathcal{L}^p(S, \mu) \) for \(p > r' \) where \(S \) and \(\mu \) are defined in Section 4 and weak-type embedding holds at the endpoint \(p = r' \). A local version of this estimate is implicit in \cite{5}, we formulate this result below. An continuous analogue of this result is a special case of G. Uraltsev’s Ph.D. thesis (personal communication).
Theorem 2.1. Given \(\lambda > 0 \) let \(I \) be the collection of \(P \) such that \(I_P \subset \{ Mf > \lambda \} \) here \(M \) is the dyadic maximal function. Then the following holds for \(q > r' \):
\[
\| \langle f, \tilde{\phi}_p \rangle 1_I \|_{L^q(P,S,\mu)} \lesssim \lambda^{1/q'} \| f \|^{1/q}_{L^1}.
\]

The sparse estimate (Theorem 1.2) will be deduced from this estimates together with the local embedding theorem of Di Plinio-Ou \cite{2} using arguments of Lacey–Lerner et al., details are discussed in later sections. We first recall some background for wavelets.

3. Wave packets

We first recall the notion of a classical wave packet associated with a Heisenberg rectangles in the phase plane, i.e. \(p = I_p \times \omega_p \subset \mathbb{R}^2 \) a rectangle of unit area (commonly refered to as a tile). (The precise technical definition for wave packets below could be relaxed or adapted to more general settings.) For convenient for each interval \(I \) we let \(c(I) \) denote its center. Typically we will assume that \(I_p \) belongs to a given dyadic grid on \(\mathbb{R} \) and similarly \(\omega_p \) belongs to another given dyadic grid. For simplicity we will assume that \(I_p \) and \(\omega_p \) are standard dyadic intervals \([2^n k, 2^n (k+1)] \) and let \(P \) be the set of these tiles.

Let \(C_3 > 0 \) be fixed. A function \(\phi_p \) is a classical \(L^p \)-Fourier wave packet adapted to \(p \) if the Fourier transform of \(\phi_p \) is supported in \(C_3 \omega_p \) and for \(M \) sufficiently large the following holds for all \(0 \leq n, N \leq M \):
\[
\frac{d^n}{dx^n} \left[e^{-i2\pi x c(\omega_p)} \phi_p(x) \right] \lesssim_{N,n} \frac{1}{|I_p|^{n+1/p}} \left(1 + \frac{|x - c(I_p)|}{|I_p|} \right)^{-N}
\]

In this paper we will assume that all unmodified wave packets are \(L^2 \) packets.

We will also consider the modified version of this wave packet which arises from a maximal or variation-norm operator.

Let \(a_1, \ldots, \) be a sequence of measurable functions on \(\mathbb{R} \) that is eventually zero pointwise (however the number of nonzero terms may depend on \(x \)) and let \(r \) be such that \(|a_1|^{r'} + \cdots + |a_n|^{r'} + \cdots \leq 1 \) pointwise.

Let \(N_1 < M_1 \leq N_2 < M_2 \leq \ldots \) be a (pointwise increasing) sequence of measurable functions that could take value in \([-\infty, \infty] \).

By a scale-truncated wave packet we mean \(\tilde{\phi}_p(x) = \phi_p(x) a_j(x) \) if \(N_j(x) \leq |I_p| < M_j \) (such \(j \) would be unique) and \(\tilde{\phi}_p(x) = 0 \) if no such \(j \) exists. For simplicity we’ll assume that the unmodified \(\phi_p \) is frequency supported in \(\omega_p \) in this case.

By a frequency-truncated wave packet we mean \(\tilde{\phi}_p(x) = \phi_p(x) a_j(x) \) if \(N_j \in \omega_{p,left} \) and \(N_{j+1} \in \omega_{p,right} \). Here \(\omega_{p,left} \) and \(\omega_{p,right} \) are two intervals that stay strictly on the left and the right of \(\omega_p \) and at most one of them is infinite (i.e. a half line). For simplicity in this paper we’ll assume that \(\omega_{p,left} \) is a half line and \(\omega_{p,right} \) is a translation of \(\omega_p \) to the right by \(n|\omega_p| \) where \(n \geq 2 \) is a sufficiently large fixed integer such that \(C_2 \omega_p \) is disjoint from \(C_2 \omega_{p,right} \) and \(\omega_{p,left} \) for some finite fixed \(C_2 > C_3 \).
By a classical wavelet projection we mean the maps from f to the collection of numbers $\langle f, \phi_p \rangle$, $p \in \mathcal{P}$. Similarly we consider the modified projection $\langle f, \tilde{\phi}_p \rangle$ for the truncated wave packets $\tilde{\phi}_p$.

4. Basic facts about outer measure spaces

We first recall several notions from [6] regarding an outer measure space (X, S, μ), which consists of the following ingredients:

(i) A countable set X. In the setting of this paper X will be discrete, in fact we will often assume X is finite (the underlying estimates are uniform over $|X|$).

(ii) An outer measure μ generated from a pre-measure on E a covering of X using non-empty subsets.

(iii) A size S taking values in $[0, \infty]$ to each pair (f, E) where $E \in \mathcal{E}$ and $f : X \to \mathbb{C}$ measurable, that is monotonic, homogeneous and quasi subadditive with respect to f i.e. for any fixed $E \in \mathcal{E}$ it holds that $S(f + g)(E) \leq S(f)(E) + S(g)(E)$ and $S(\lambda f)(E) = |\lambda| S(f)(E)$ and if $|f| \leq |g|$ pointwise then $S(f)(E) \leq S(g)(E)$.

We may then the \mathcal{L}^∞ norm by $\text{sup}_{E \in \mathcal{E}} S(f)(E)$, and for \mathcal{L}^p we use the Lorentz norm approach:

$$\|f\|_{\mathcal{L}^p(X, S, \mu)} = \sup_{\lambda > 0} \lambda \mu(S(f) > \lambda)^{1/p},$$

$$\|f\|_{\mathcal{L}^r(X, S, \mu)} = \left(\int_0^\infty \lambda^{p-1} \mu(S(f) > \lambda) d\lambda \right)^{1/p}.$$

Here the distribution function is defined as follows: for Borel measurable $F \subset X$ we define $\text{outsup}_F S(f) := \|f 1_F\|_{\mathcal{L}^\infty(X, S, \mu)}$. Then for any $\lambda \in \mathbb{R}$ let $\mu(S(f) > \lambda) := \inf\{\mu(F) : \text{outsup}_{X \setminus F} S(f) \leq \lambda\}$.

Many standard properties of classical L^p spaces can be proved for outer L^p spaces, see [6] for details.

5. Outer measure spaces

Let C_2 be any finite constant in (C_3, ∞). Let $n_0 \geq 2$ be a fixed integer and let $\omega_{p, \text{right}} = \omega_p + n_0|\omega_p|$, assume n_0 is large enough such that $C_2\omega_p$ and $C_2\omega_{p, \text{right}}$ are disjoint. For each $p \in \mathcal{P}$ let $\tilde{\omega}_p$ be the following enlargement of ω_p:

$$\tilde{\omega}_p = \text{convex-hull}(C_2\omega_p \cap C_2\omega_{p, \text{right}})$$

We now describe the covering set E. A subset T of \mathcal{P} is in E if there exists a dyadic interval I_T and a real number ξ_T such that for all $p \in T$ it holds that

$$I_p \subset I_T \quad \text{and} \quad \omega_T := [\xi_T - \frac{1}{2|I_T|}, \xi_T + \frac{1}{2|I_T|}] \subset \tilde{\omega}_p$$

We say that T is overlapping if $\xi_T \in C_2\omega_p'$ for all $p \in T$ and T is lacunary if $\xi_T \notin C_2\omega_p'$ for all $p \in T$; clearly any $T \in \mathcal{E}$ can be splitted into two elements of \mathcal{E} one of each type.
For each interval I let $w(I)$ be $\int_I w$, and we consider the following size:

$$S_{t,\text{overlap}}(F)(T) = \sup_{E \text{ is overlapping}} \frac{1}{E \cap T} \left| w(I_E) \right|^{1/t} \left| \left\{ P \mid \sum_{p \in E} \left| F(p) \right|^{t} w(I_p) \right\} \right|^{1/t}$$

and define $S_{t,\text{lacunary}}$ similarly.

Let $S = S_{t,\text{overlap}} + S_{t,\text{lacunary}}$. We generate the outer measure μ_w on \mathbb{P} by defining for each $A \subset \mathbb{P}$

$$\mu_w(A) = \inf\{ \sum_T w(I_T) \}$$

the inf is over countable covering of A using elements of E.

For convenience of notation let $F(p) = \langle f, \phi_p \rangle$ and $G(p) = \langle f, \tilde{\phi}_p \rangle$.

6. Local Embedding for Frequency-Truncated Wavelet Projections

We will use the same set up as in the last section and let $\tilde{S}_w = S_{t,\text{lacunary}} + S_{t,\text{overlap}}$. Let density denote the following quantity: for each $A \subset \mathbb{P}$ let

$$\text{density}(g, A) = \sup_{T \in E, T \subset A} \left(\frac{1}{|I_T|} \int_{X_{I_T}} |g|^{r'} \sum_{j \in N_j \subset T} |d_j|^{r'} \right)^{1/r'}$$

We first prove an estimate

Lemma 6.1. For any $A \subset \mathbb{P}$ and $0 \leq \delta \leq 1$ it holds that

$$S(\langle f, \tilde{\phi}_p \rangle, A) \leq (\sup_{p \in A} \frac{1}{|I_p|} \int |f|^{r(1-\delta)} \tilde{\chi}_{I_p}^{N_p})^{1/r'} \text{density}(|f|^{1-\delta}, A)$$

Proof. Let $M(A)$ be the right hand side. It suffices to show that if T is lacunary then for any sequence a_p we have

$$\sum_{p \in T} |I_P| a_p \langle f, \tilde{\phi}_p \rangle \lesssim |I_T| S_{t,\text{lacunary}}(A, T) M_A$$

then taking $a_p = \langle f, \tilde{\phi}_p \rangle$ we obtain the desired estimate. By breaking T into smaller subsets that are spatially disjoint (if necessary) we may assume that there is some $p \in T$ such that $I_P = I_T$.

Now factorize $f = f_0 f_1$ where $|f_0| = |f|^{1-\delta}$ and $|f_1| = |f|^{\delta}$. Now using estimates from Oberlin et. al. [12], Proposition 5.1], the LHS is controlled by

$$\int_{I_T} |\sum_P |I_P| a(P) \tilde{\phi}_p f| + \sum_{k \geq 1} \int_{2^{k} I_T \cap 2^{k-1} I_T} \sum_P |I_P| a(P) \tilde{\phi}_p f|$$

$$\lesssim \left(\int_{I_T} \sum_P |I_P| a(P) \tilde{\phi}_p f_0|^{r'} \right)^{1/r'} \left(\int_{I_T} |f_1|^{r'} \right)^{1/r} + \sum_{k \geq 1} \left(\int_{2^{k} I_T \cap 2^{k-1} I_T} \sum_P |I_P| a(P) \tilde{\phi}_p f_0|^{r'} \right)^{1/r'} \left(\int_{2^{k} I_T \cap 2^{k-1} I_T} |f_1|^{r'} \right)^{1/r}$$

$$\lesssim \sum_{k \geq 0} 2^{-Mk} |I_T|^{1/r'} S(a, T) \text{density}(f_0, T) \left(\int_{2^{k} I_T \cap 2^{k-1} I_T} |f_1|^{r'} \right)^{1/r}$$
and again we let \(\delta \) making \(r\delta \)

We now choose \(M \) such that \(\sup \) and \(\liminf \) the argument of Culiuc-Di Plinio-Ou. Without loss of generality assume that \(f \) and \(g \) are compactly supported \(C^\infty \). For each interval \(J \) let \(I_j \) be maximal elements of \(I_{f,J,p} \cup I_{g,J} \) for \(r'' < p < 2 \).

Then the intervals in \(I_J \) are disjoint and their union has total measure < \(|J|/2 \).

We start with \((J_j) \) a nested sequence of intervals covering \(\mathbb{R} \) such that \(supp(f) \) and \(supp(g) \) are contained in \(3J_j \) any \(j \). Then for each member \(J \) of the sequence
we build $S_0(J) = \{J\}$ and $S_{k+1}(J) = \bigcup_{I \in S_k} I_I$, and let $S(J) = \bigcup_{k\geq 0} S_k(J)$. Eventually we obtain the 1/2-sparse grid
\[S = \bigcup_j S(J_j) \]

Let $P_c(J)$ denote the subset of P containing P such that $I_P \subset J$, clearly
\[P = \bigcup_j P_c(J_j) \]

It suffices to show that if Q is $P_c(J_j)$ any j then
\[\sum_{P \in Q} |I_P| \langle g, \phi_P \rangle \langle \bar{\phi}_P, f \rangle \lesssim \sum_{I \in S(J_j)} |I|(f)_{3t, p}(g)_{3t} \]

Let $\Lambda_Q(f, g)$ denote the bilinear form on the left hand side. To see the above estimate we show that there is a constant C such that for any P
\[\Lambda_P(f_{13I}, g_{13I}) \leq C |J|(f)_{3I, p}(g)_{3I} + \sum_{I \in I_J} \Lambda_{P_c(I)}(f_{13I}, g_{13I}) \]

Indeed, decompose the left hand side into $\Lambda_{I_J}(f_{13I}, g_{13I}) + \Lambda_{I_I}(f_{13I}, g_{13I}).$ Note that the given assumption implies $p' < r$, so let $r > t > p'$. Then $t > p'$ and $t' > r'$, so the first term is controlled by
\[\| (f_{13I}, \phi_P) 1_{I_I} \|_{L'(P, S_{1, \mu})} \times \| (g, \bar{\phi}_P) 1_{I'_I} \|_{L'(P, S_{2, \mu})} \]
\[\lesssim |J|^{1/t}(f)_{3I, p}|J|^{1/r'}(g)_{3I} \]
\[= |J|(f)_{3I, p}(g)_{3I} \]

For the second term we decompose $f_{13I} = f_{3I} + f_{13I}$ and similarly for g for each $I \in I_I$. It remains to show that
\[\sum_{I \in I_I} \Lambda_{P_c(I)}(f_{13I}, g_{13I}) \leq |J|(f)_{3I, p}(g)_{3I} \]
and similarly $\sum_{I \in I_J} \Lambda_{P_c(I)}(f_{13I}, g_{13I}) \leq |J|(f)_{3I, p}(g)_{3I}.$

Without loss of generality assume that $\text{supp}(f) \subset 3J$ and $\text{supp}(g) \subset 3J$. From the definition of I_I it suffices to show that
\[\Lambda_{P_c(I)}(f_{13I}, g_{13I}) \lesssim |I| \inf_{x \in I} M_p(f)(x)M(g)(x) \]
\[\Lambda_{P_c(I)}(f_{13I}, g_{13I}) \lesssim |I| \inf_{x \in I} M_p(f)(x)M(g)(x) \]

We will first prove the second estimate, the argument is similar for the first estimate and will present later.

We devide $P_c(I)$ into subsets $P_{c,k}(I)$ where $2^k I_P \subset I$ but $2^{k+1} I_P \notin I$ and it suffices to show the analogous estimate with exponential decay in k. Let L_k be the collection of intervals L such that for some $P \in P_{c,k}(I)$ we have $I_P = L$. If $k = 0$ it is clear that one of the endpoints of L must be an endpoint of I therefore it is clear that $\sum |L| \lesssim |I|$, on the other hand if $k > 0$ then L have finite overlap. Thus it suffices to show for each $L \in L_k$ and any $p > 1$
\[\Lambda_{P_{c,L}}(f_{13I}, g_{13I}) \lesssim 2^{-Nk}|L| \inf_{x \in L} M_p(f)(x)M(g)(x) \]
(Without loss of generality we may assume $p \leq 2$.) Given any interval L let $\chi_L(x) = (1 + \frac{(x-c(L))^2}{|L|^2})$. For any $p \leq 2$ we have, recall that ϕ_P is L^1 normalized, therefore

$$\sup_{P: I_P = L} | \langle f 1_{3I}, \phi_P \rangle | \leq |L|^{-1} \| f 1_{3I} \chi_L^{-N} \|_1$$

On the other hand

$$\sum_{P: I_P = L} | \langle g 1_\{3I\}^*, \tilde{\phi}_P \rangle | \leq |L|^{-1} \| g 1_\{3I\}^* \chi_L^{-N} \|_1$$

To see the first estimate, we note that the left hand side is bounded above by

$$\| g 1_\{3I\}^* \chi_L^{-N} \|_1 \sum_{P: I_P = L} | \tilde{\phi}_P(x) | \chi_L^N(x) \|_\infty .$$

By the variational truncation condition, for each x in the sum inside the second norm there is only one term, which is bounded above by $O(|L|^{-1})$.

It follows that, via classical $L^1 L^\infty$ Holder the desired estimate follows

$$\Lambda_{P_\infty(L)}(f 1_{3I}, g 1_\{3I\}^*) \leq 2^{-NK} |L| \inf_{x \in J} M f(x) \inf_{x \in J} M g(x) .$$

Now for the first estimate we proceed similarly, and in the final step we estimate

$$\Lambda_{P_\infty(L)}(f 1_{3I}^*, g 1_{3I}) \leq |L| \sup_{P: I_P = L} | \langle f 1_{3I}^*, \phi_P \rangle | (\sum_{P: I_P = L} | \langle f 1_{3I}, \phi_P \rangle |)$$

$$\leq 2^{-NK} |L| \inf_{x \in J} M f(x) \inf_{x \in J} M g(x)$$

References

Francesco Di Plinio, Brown University, Providence, RI, USA
E-mail address: fradipli@math.brown.edu

Yen Do, Department of Mathematics, The University of Virginia, Charlottesville, VA 22904-4137, USA
E-mail address: yen.do@virginia.edu

Universitat Bonn, Germany
E-mail address: guraltse@math.uni-bonn.de