Towards Wearout-Aware and Accelerated Self-Healing Digital Systems

Student: Xinfei Guo, Advisor: Mircea R. Stan
Department of Electrical and Computer Engineering, University of Virginia
{xg2dt, mircea}@virginia.edu

Motivation: Wearout is a crisis!

Wearout Crisis

- **BEOL** - Electromigration (EM)
- **FEOL** - Negative/Positive-bias temperature instability (N/PBTI)

Previous Solutions
- Tolerate - Design for the worst case (margins, upsizing)
- Compensate - Dynamically adapt to wearout
- Slow down the wearout - Reduce the stress
- Passive Recovery - Remove the stress, shut off the core

This Work
- Repair Both wearout completely by introducing the notion of Accelerated & Active Recovery
- Circadian Rhythms for FULL recovery
- Demonstrate both solutions experimentally
- Introduce Accelerated & Active Recovery as a new design knob for cross-layer resilience

Accelerated & Active Recovery

BTI (FEOL Wearout) active and accelerated recovery

EM (BEOL Wearout) active and accelerated recovery

Accelerated Self-Healing Results

BTI Measurement Results

An example where about 72.4% of wearout is recovered by accelerated self-healing techniques in only 1% of stress time (measured).

EM Measurement Results

There is still a permanent part.

Cross-Layer Implementations

Cross-Layer Accelerated Self-Healing (CLASH) System

- System scheduler schedules the recovery proactively based on the known circadian rhythms (e.g. for mobile device applications, 12 hrs + Sleep time)

Publications

- [Submitted] Healing BEOL and FEOL Wearout with Active Recovery
- [VCS’16/ICCAD] Enabling Wearout-Immune BEOL and FEOL with Active Rejuvenation
- [INTEGRATION, the VLSI Journal] “Implications of Accelerated Self-Healing as a Key Design Knob for Cross-Layer Resilience”
- [ASP-DAC’16] “Work hard, sleep well - Avoid irreversible IC wearout with proactive rejuvenation”
- [SELE’16] “MCPS: Multiple-Critical-Path Embeddable NBTI Sensors for Dynamic Wearout Management”

Scheduling/Load-balancing

- System scheduler schedules the recovery proactively based on the known circadian rhythms (e.g. for mobile device applications, 12 hrs + Sleep time)

Embeddable Wearout Sensors

- Track both wearout and (accelerated) recovery
- Track path reranking

High Temperatures

- Heating Elements

Negative Voltages

- A Charge-pump Neg. voltage generator
- Wearout-aware Power Gating

Full Recovery Time

- Different sleep conditions
- 12-hour constant stress under regular operation condition (no accelerated stress)

A Systematic Solution

- [Submitted] Healing BEOL and FEOL Wearout with Active Recovery
- [VCS’16/ICCAD] Enabling Wearout-Immune BEOL and FEOL with Active Rejuvenation
- [INTEGRATION, the VLSI Journal] “Implications of Accelerated Self-Healing as a Key Design Knob for Cross-Layer Resilience”
- [ASP-DAC’16] “Work hard, sleep well - Avoid irreversible IC wearout with proactive rejuvenation”
- [SELE’16] “MCPS: Multiple-Critical-Path Embeddable NBTI Sensors for Dynamic Wearout Management”

Applications

- Sleep when getting tired for FULL recovery

- Main Ideas
 - The boundary between reversible & irreversible is “soft”
 - Irreversible wearout can be recovered through acceleration
 - Frequency dependency of accelerated wearout & recovery
 - Sleep when getting tired to FULLY avoid the irreversible wearout
 - Negative “turbo” boost at the system level