Cross-layer Accelerated Self-Healing (CLASH)

- Aging Effect in FPGA chips and systems

Xinfei Guo and Prof. Mircea R. Stan

Electrical and Computer Engineering Dept., University of Virginia, Charlottesville, VA 22904

BACKGROUND

- Circuit reliability
 - Defined in term of mean time between failures (MTBF)
 - Process, voltage, temperature and aging variations (PVTA) have a substantial effect
 - Relatively hard to capture and deal with

- Aging Effect
 - Deterioration of circuit performance over time
 - More significant with extremely scaling technology
 - Including bias temperature instability (BTI), Hot carrier injection (HCI), time-dependent dielectric breakdown (TDDB), Electromigration (EM), etc.

Purpose

- Capture aging/wearout effect in FPGA based systems
- Develop accelerated recovery mechanism to rejuvenate electronic system
- Based on test chip

PLATFORM

- Ring Oscillator
 - Each ring oscillator can be enabled separately
 - Clock divider is used to achieve fine granularity
 - I/Os are assigned based on availability

- Aging Sensors

MEASUREMENT RESULTS

- Ring Oscillator Frequency vs. Line Position
- Power, Performance vs. Line number

MUTUAL EFFECT MEASUREMENTS

- Mutual effect will affect the performance of ring oscillator
- Self-heating can also influence performance and power

EXPERIMENT SETUP

- Stress and Recovery System Setup
- Programming FPGA Chip
- Temperature characteristic measurement in Thermal Chamber