Dynamic Demand for New and Used Durable Goods without Physical Depreciation: The Case of Japanese Video Games

Masakazu Ishihara
Stern School of Business
New York University

Andrew Ching
Rotman School of Management
University of Toronto

September 16, 2011

*This is work-in-progress. Comments are welcome.
†Please direct all correspondence to Masakazu Ishihara, Stern School of Business, New York University. Email: mishihar@stern.nyu.edu.
Abstract

In product categories such as books, CDs/DVDs, and video games, the competition from used goods markets has been viewed as a serious problem by producers. These products share a common feature: the physical attributes of the products hardly depreciate but the consumption value to owners depreciates quickly due to satiation. The goal of this paper is to examine the substitutability between new and used goods for this type of product, and to study the impact of used goods markets on the profitability of new goods. To achieve this goal, we develop a new structural empirical framework. In our model, the demand for new goods and the demand for and the supply of used goods are generated by a dynamic discrete choice model of forward-looking consumers that incorporates (i) consumers’ new and used goods purchasing decisions, (ii) consumers’ used goods selling decision, (iii) consumer expectations about future prices of new and used goods and resale values of used goods, and (iv) the depreciation of both owners’ and potential buyers’ consumption values.

We apply this framework to the Japanese video game software market in which used markets are mostly controlled by used-game retailers. A unique feature of our data set is that in addition to weekly sales and prices of new and used video games by game title, it contains weekly aggregate quantities sold by owners to retailers and the associated resale values, and weekly inventory levels of used games at retailers. The data on both consumers’ new and used goods purchasing decisions and used goods selling decisions allow us to separately identify the depreciation rates of consumption values to both owners and potential buyers. In addition, unlike previous studies that impose the market clearing condition in used-good trading, our data set allows us to make use of the excess supply information to control for the impact of the availability of used games on consumer purchasing decisions. To estimate our dynamic model using market-level data, we develop a new Bayesian Markov chain Monte Carlo (MCMC) algorithm that is applicable to a non-stationary dynamic discrete choice model with potential price endogeneity problems.

The estimation results show that (1) the depreciation rate of consumption values to potential buyers from the release week to the 2nd week is about 41% but becomes close to zero after the 2nd week; and (2) the depreciation rate of consumption values to owners after owning for one week ranges from 64% to 88% depending on product characteristics, but it becomes smaller and smaller as the duration of ownership increases. Consumption values to owners become less than one percent of the initial value after consumers own the game for 3 to 7 weeks. Using the parameter estimates, we examine three types of demand and supply elasticities. They measure (a) the impact of used-game prices on new-game demand; (b) the impact of used-game inventory levels on new- and used-game demand; and (c) the impact of used-game resale values on used-game supply. The first type of elasticity is a standard measure for the substitutability. The second and third types have never been examined in the previous literature, and they can provide important insights as to how an increase in the availability of used games affects new-game revenues. Furthermore, we quantify the impact of eliminating the used video game market on new-game revenues. We find that the elimination of the used video game market increases the total revenue for a new game by 2% on average, if video game publishers do not adjust their pricing strategies. However, about half of the games experience a reduction in new-game revenues after the elimination of the used video game market. This is mainly because the elimination of the used market also eliminates the future selling opportunity for consumers and reduces the demand for new games, especially in the earlier periods. This suggests that the existence of the used video game market in Japan could be beneficial to video game publishers. Finally, we examine the optimality of the conventional flat-pricing strategy used by video game publishers in Japan. We simulate the model by marginally reducing the price of new games over time (as in the pricing-skimming strategy), and compare its profitability to that of the flat-pricing strategy. The result suggests that this marginal price-skimming strategy increases the total revenue for a new game by 0.5% on average.

Keywords: Used Goods Market, Dynamic Consumer Purchasing and Selling Decisions, Consumer Satiation, Bayesian Estimation of Dynamic Discrete Choice Models
1 Introduction

The existence of used goods markets has been viewed as a serious problem by producers in categories such as books, CDs/DVDs, and video games. Producers and their supporters argue that used goods retailing significantly lowers their profits and limits the development of new products. For instance, book publishers and authors have expressed their annoyance to Amazon over used books sold on its websites (Tedeschi 2004). Video game publishers in Japan attempted to eliminate used video game retailing by suing used video game retailers (Hirayama 2006). Their main argument is that products like books and video games physically depreciate negligibly, but the consumption value to owners declines quickly due to satiation. As a result, unlike products that physically depreciate more considerably (such as cars), producers of books, video games, and other digital products may face competition from used goods markets almost immediately after a new product release.

One critical factor that determines the degree of competitive pressure from the used goods markets for these products is how fast owners of a product become satiated with the product. Used goods retailers buy used goods from owners who are satiated, and sell them to consumers who have not yet consumed the product and thus still have high willingness to pay for it. Holding all else constant, the higher the depreciation of consumption values to owners due to satiation, the larger the supply of used goods and the lower the resale value retailers pay.\(^1\) Therefore, the competitive pressure from used goods markets could be higher for products with a higher depreciation of consumption values to owners. The depreciation rate of consumption values to owners due to satiation typically depends on product characteristics such as genre and quality. In the case of video games, some games can be played repeatedly and do not have a well-defined ending (e.g., sports games). For these games, the depreciation rate of consumption values to owners should be low. On the other hand, some games lose

\(^1\)In this paper, we define the resale value as the amount of money that used goods retailers pay to consumers when these retailers buy used goods from consumers. Thus, the difference between the price and the resale value of used goods is the profit margin earned by these retailers.
their value to owners after owners have reached an ending (e.g., role-playing games). This suggests that consumer selling decisions may critically depend on product characteristics. In addition, the consumption value of a product may also decline for potential buyers, especially in categories where new products are constantly being introduced and the “freshness” of the product plays a critical role in attracting consumers’ attention. We call this the *depreciation of consumption values to potential buyers*. In order to fully understand the competitive pressure that used goods markets impose on new goods markets, it is crucial to incorporate these two types of consumption value depreciation into the analysis.

Despite their importance, no prior research separately incorporated these two types of consumption value depreciation when assessing the impact of used goods markets on new goods markets. This is mainly due to two challenges: (i) when physical depreciation is present, it is difficult to separately measure the decline of consumption values due to satiation from that due to physical depreciation; (ii) even if researchers can control for physical depreciation, they still need to observe both consumer purchasing and selling decisions (or data that can link to them) in order to separately measure these two types of consumption value depreciation. The data sets used in the previous literature include only time-series variation in the quantities sold and price for new and used goods; however, they do not contain crucial information on the quantities sold by consumers to retailers and the associated resale values. Time-series variation in the price of new and used goods alone is not sufficient for disentangling these two types of consumption value depreciation even in the absence of physical depreciation. These challenges have limited previous studies, which have been forced to assume that consumption value depreciation is identical for owners and potential buyers (e.g., Purohit 1992, Esteban and Shum 2007, Schiraldi 2009, Engers et al. 2009, Chen et al. 2010).

The goal of this paper is to examine the substitutability of new and used goods in these types of product categories, and to study the impact of used goods markets on the profitability of new
goods. To achieve this goal, we develop a new structural empirical framework. In our model, the new good’s demand and used good’s demand and supply are generated by a dynamic discrete choice model of forward-looking consumers that incorporates (i) consumers’ new and used goods purchasing decisions, (ii) consumers’ used goods selling decision, (iii) consumer expectations about future prices of new and used goods and resale values of used goods, and (iv) the depreciation of both owners’ and potential buyers’ consumption values. To the best of our knowledge, this is the first dynamic model of demand that incorporates these four important features of consumer decision making in durable goods markets. In our model, the expected present discounted value of future payoffs from purchasing a product is determined by the dynamic consumer selling decision problem, which depends on the depreciation rate of consumption values to owners and future resale value. Furthermore, although the previous literature has identified consumer expectations about future prices as a critical element in dynamic durable goods purchase decisions (e.g., Nair 2007, Gordon 2009), this is the first study that uses data on resale values and studies the role of consumer expectations about future resale value in a dynamic durable good purchase decision.

We have assembled a novel data set on the Japanese video game market that allows us to estimate the proposed model. In Japan, used video game markets are mostly controlled by used-game retailers. For 20 video games (software), we have collected weekly data on the sales and prices of new and used games, the quantities sold by consumers to retailers and the associated resale values, and the inventory levels of used games carried by retailers. The data on both consumers’ new and used goods purchasing decisions and used goods selling decisions allow us to separately identify the depreciation rates of consumption values to owners and potential buyers. In addition, unlike previous studies that impose the market clearing condition on used durable goods, our data set allows us to make use of the excess supply information to control for the impact of the availability of used games on consumer purchasing decisions.
To estimate our model, we extend the Bayesian Markov chain Monte Carlo (MCMC) algorithm proposed by Imai, Jain and Ching (2009a) (IJC algorithm) to a non-stationary dynamic model. Similar to the IJC algorithm, this new algorithm solves and estimates the model simultaneously. In conventional approaches to estimating a finite-horizon model, value functions need to be computed at all or a subset of pre-determined grid points in all periods by backward induction. However, when a model has multiple continuous state variables, the total number of grid points will be very large, which makes computing value functions computationally very demanding. Our new algorithm alleviates the computational burden by partially solving value functions at only one randomly drawn state in each period, storing them, and approximating the expected future values by the weighted average of those partially solved value functions evaluated at different states in past iterations. We then combine the proposed algorithm with the pseudo-policy function approach (Ching 2010a; 2010b) to control for potential endogeneity problems. The method we propose augments the unobserved shocks based on the joint-likelihood of the demand-side model and the pseudo-detailing policy functions. Thus, unlike the standard GMM approach (Berry et al. 1995), we avoid one inner loop for inverting the market share to recover the mean utility level. Also, unlike the simulated maximum likelihood method, we do not need to integrate out the unobserved shocks during the estimation.

The estimation results show that (1) the depreciation of consumption values to potential buyers from the release week to the 2nd week is about 41% but becomes close to zero after the 2nd week; and (2) the depreciation of consumption values to owners after owning for one week ranges from 64% to 88% depending on product characteristics, but it becomes smaller and smaller as the duration of ownership increases. Consumption values to owners become less than one percent of the initial value after consumers own the game for 3 to 7 weeks. Using the parameter estimates, we examine three types of demand and supply elasticities. They measure (a) the impact of used-game prices on new-game demand; (b) the impact of used-game inventory levels on new- and used-game demand;
and (c) the impact of used-game resale values on used-game supply. The first type of elasticity is a standard measure for the substitutability. The second and third types have never been examined in the previous literature, and they can provide important insights as to how an increase in the availability of used games affects new-game revenues.

Furthermore, we quantify the impact of eliminating the used video game market on new-game revenues. We find that the elimination of the used video game market increases the total revenue for a new game by 2%, on average, if video game publishers do not adjust their pricing strategies. However, about half of the games experience a reduction in new-game revenues after the elimination of the used video game market. This is mainly because the elimination of the used market also eliminates the future selling opportunity for consumers and reduces the demand for new games, especially in the earlier periods. This suggests that the existence of the used video game market in Japan could be beneficial to video game publishers.

Publishers in the Japanese video game industry have historically used a flat-pricing strategy for new games for at least one year after a new game release and have never experimented with a price-skimming strategy. This is in contrast to the US video game industry where price-skimming is a common strategy. It is not clear whether video game publishers in Japan are setting prices optimally. To examine the optimality of flat-pricing strategies, we simulate the total revenues for new games by marginally reducing the price of new games over time and compare its profitability to the one from the conventional flat-pricing strategy. We find that marginally reducing the price of a new game increases its total revenue by 0.5% on average. Although one would need a dynamic equilibrium model to fully account for the effect of competitive pressure from used games on optimal pricing strategies for new games, our result provides some insights about the optimality of flat-pricing strategies in the Japanese video game market.

The rest of the paper is organized as follows. Section 2 reviews the previous literature. Section 3
describes the Japanese video game data used in this paper and presents some empirical regularities that have not been explored in the previous literature. Section 4 describes the dynamic discrete choice model of consumer purchasing and selling decisions. Section 5 describes the estimation strategy and identification. In Section 6, we discuss the parameter estimates and the counterfactual experiments. Section 7 concludes.

2 Literature Review

Our research is closely related to the literature on the dynamic purchase decisions in consumer durable goods markets (e.g., Song and Chintagunta 2003, Chevalier and Goolsbee 2009, Gordon 2009, Gowrisankaran and Rysman 2009). In particular, Nair (2007) studies the intertemporal price discrimination in the US video game industry, and examine the role of consumer price expectation. However, during his sample period, the U.S. used video game market was very small. Thus, he did not account for the impact of used video game markets. Esteban and Shum (2007) build a dynamic equilibrium model of durable goods oligopoly and study the impact of durability and used car markets on equilibrium car manufacturers’ behavior. Chen et al. (2010) extend Esteban and Shum (2007) and allow for transaction costs. Schiraldi (2009) estimates a dynamic discrete choice model of automobile replacement decisions, and studies the impact of scrappage subsidies. However, these three papers study car markets in which durability is measured by quality deterioration, and consumer selling decision is mainly driven by the replacement decision.

Our research is also closely related to Ghose et al. (2006) who study the cannibalization of new books from used books and find that used books are poor substitute for new books. However, they do not account for consumers’ forward-looking behavior for purchasing and selling decisions. Finally, our research is also related to studies that investigate the relationship between the variations in used goods prices and the depreciation of durable goods. Purohit (1992) examines the depreciation of used
cars, measured by used car prices, in response to feature changes incorporated in new model cars in primary markets. Engers et al. (2009) study how much variation in used car prices can be explained by the net flow of benefits to car owners. They provide evidence that the net flow of benefits, which is similar to the consumption value to owners in our research, can explain used car prices. However, these two papers do not study the dynamic consumer purchase decision on new and used goods.

Finally, there is a large theoretical literature on a variety of marketing practices in new and used durable goods markets. These include leasing contracts (e.g., Desai and Purohit 1998, Desai and Purohit 1999), channel coordination (Desai et al. 2004, Shulman and Coughlan 2007), trade-ins (Rao et al. 2009), and retail versus P2P used goods markets (Yin et al. 2010). One common feature of these theoretical models is that the used goods markets clear in every period. In our proposed dynamic structural demand model, we allow for the potential impact of the excess supply of used goods on consumer demand. Although this is done in a reduced-form fashion, it sheds some lights on the possible theoretical explanations for the patterns of the excess supply generated in equilibrium.

3 Data

3.1 Japanese video game industry

Since mid-80s, the Japanese video game market has grown rapidly. The size of the industry in 2009 has reached $5.5 billion on a revenue basis (including sales of hardware, software, other equipments). This is about three times larger than the theatrical movie revenue in Japan, and it has become one of the most important sectors in the Japanese entertainment industry.\(^2\) The existence of the used video good market has been a serious issue for video game publishers since 90s. In 2009, the sales of used software alone amounts to $1.0 billion on a revenue basis. One reason for the large used video game market in Japan could be that unlike North America, video game renting by third-party

\(^2\)In fact, the size of the video game industry in the US has grown to $20.2 billion, which is now higher than the theatrical movie revenues.
companies is prohibited by law in Japan. Another reason argued by Hirayama (2006) is the flat-pricing strategy commonly adopted by video game publishers - the price of new games is maintained at the initial level at least one year after the release. However, it can also be argued that the used market has induced publishers to adopt the flat-pricing strategy. Liang (1999) uses a theoretical model to show that when used goods markets are present, durable goods monopolists may be able to credibly commit to a high price (avoiding the Coarse Conjecture). In this paper, we will conduct a policy experiment to shed some light on whether the flat-pricing puzzle in the Japanese video game market is optimal.

3.2 Japanese video game data

We have collected a data set of 20 video games that were released in Japan between 2004 and 2008. The data come from several sources. For each video game, weekly aggregate sales of new copies and its manufacturer suggested retail price (MSRP) are obtained from the weekly top 30 ranking published in Weekly Famitsu Magazine. The average number of weeks observed across games is 19 weeks. In Japan, the sales of new copies sharply declines after the release week (see Figure 1). In our data set, the median percentage of new game copies sold in the release week (relative to the total sales after one year) is 54%, and the median percentage of new game copies sold within the first month (4 weeks) after release is 82%. Thus, the sales of new copies is concentrated within the first month in Japan. In addition to the data from the primary market, we collected weekly aggregate trading volumes (both purchasing and selling) and the associated weekly average retail prices and resale values in the used market by game title. These are collected from the Annual Video Game

---

3In principle, video game publishers can run the rental business for their own video games. However, only one publisher attempted to operate it in the history and did not succeed and existed.

4Note that in Japan, resale price maintenance is illegal for video games while it is still legal for books, magazines, newspapers and music.

5Recently, Cho and Rust (2010) investigate the flat rental pricing strategy used by car rental companies, and conclude that actual rental markets are not fully competitive and firms many be behaving suboptimally.

6Weekly Famitsu Magazine is a major weekly video game magazine in Japan published by Enterbrain, Inc.
Industry Report published by Media Create Co., Ltd. The average number of weeks observed across games is 36 weeks.

We also collected various video game characteristics from Weekly Famitsu Magazine, including critic rating, user rating, story-based game dummy,\textsuperscript{7} and multi-player game dummy. Finally, the size of market for a video game is measured by the installed base of the platform in which the video game was released. The platforms of the 20 games include three consoles (PlayStation 2, PlayStation 3, Nintendo GameCube). We collected the weekly sales of all seven platforms above from their release week to calculate the cumulative sales.

Table 1 shows the summary statistics. The average price of used copies across games and time is about two-thirds of the price of a new copy. Also, it can be seen that the profit-margin for used game retailers is large. The average observed sales of used copies is less 10\% of that of new copies during the sample period. It should be noted that the sales of used copies typically lasts longer than that of new copies, and our data set covers only up to one year. Thus, the number is expected to be larger if we observe a longer time-series data.

3.3 Some empirical regularities

In this section, we will briefly describe three empirical regularities that have not been documented in the previous studies on used goods markets: (i) quantities demanded and supplied for used goods over time, (ii) inventory level of used goods over time, and (iii) the price of used goods and the resale value.

Figure 2 plots the average quantities demanded and supplied for used goods as well as the average inventory level of used goods over 15 weeks. First, both quantities demanded and supplied for used goods sharply increase in the first few weeks after the opening of used goods markets (second week of

\textsuperscript{7}Story-based games (e.g., role-playing games) have an ending of the story, while non story-based games (e.g., sports games) have no clear definition for ending.
game release), reach their peaks, and gradually decrease afterwards. The initial increase is probably because it takes a few weeks for owners of a game to become satiated with their games. As the quantity supplied for used copies by owners increases, the sales of used copies also follows. Second, on average, the inventory level of used games carried by retailers grows in the first 15 weeks. About half of the games in our data set exhibits a decline after some point during the sample period. It is clear that in the Japanese video game market, the used market does not clear in every period. Therefore, unlike previous studies which assume the used goods market clearing in each period, we will make use of this excess supply information when estimating the dynamic demand model.

Figure 3 plots the average price and resale value of used goods over the first 15 weeks. They both gradually decrease over time, and the resale value decreases slightly faster. This is consistent with our assumptions that consumption values to both potential buyers and owners depreciate over time, and their depreciation rates could be different.

4 Model

In this section, we describe the dynamic discrete choice model of consumer purchasing and selling decisions for video games.\(^8\) We assume that consumers make purchasing and selling decisions separately for each game denoted by \(g\).\(^9\) Let \(i\) indexes consumers, and \(t\) indexes time. At the beginning of the initial period \(t = 1\) (i.e., the period in which the new game is released), no consumers own game \(g\) and used games are not available yet. Thus, consumers’ decision problem is to decide whether to buy a new good or not to buy. In period \(t > 1\), consumers who have not purchased the game up to \(t - 1\) observe the prices of new and used copies, the resale value and inventory level of used copies.

\(^8\)Note that the model can be applied to other markets with similar features as well.
\(^9\)We do not explicitly model the competition among different games since our focus in this paper is the competition between new and used copies of the same game. We control for the impact of the availability of other games on the purchase decision of game \(g\) by including the cumulative number of other newly introduced games since game \(g\)’s release. Note that Nair (2007) finds evidence that the substitutability between two different video games is very low in the US market, and thus does not model the competition among different games.
at retailers (all the information is available for consumers in the public domain), and decide whether
to purchase a new or used good, or not to purchase anything. Let $j = 0, 1, 2$ denote no purchase
option, new good purchase, and used good purchase, respectively. If consumers have already bought
game $g$ prior to time $t$ and have not sold it yet, then they decide whether or not to keep the game
given the resale value in period $t$. Let $k = 0, 1$ denote keeping and selling options, respectively. If
consumers sell their game, they will exit the market.

The state space of the consumer decision model consists of the following variables: (1) price of new
and used goods ($p_1, p_2$), (2) resale value ($r$), (3) inventory level of used copies at retailers ($Y$), which
controls for the impact of the availability of used copies on consumer purchasing decisions, (4) time
since release ($t$), which characterizes the single-period consumption value to potential buyers, (5)
time since purchase ($\tau$), which affects the single-period consumption value to owners, (6) unobserved
shocks for the demand for new and used copies ($\xi_1, \xi_2$), (7) unobserved shocks for the supply of used
copies ($\xi_s$), (8) cumulative number of newly introduced games since the release of the focal game
($C$). As we will describe later, (1), (6), and (8) appear only in the consumer purchasing decision
problem, (5) and (7) appear only in the consumer selling decision problem, and (2)-(4) appear in
both consumer purchasing and selling decision problems.

We will first describe the single-period utility functions for purchasing and selling decisions, and
then move to the description of the value functions.

4.1 Single-period utility functions

In each period, consumers derive a value from owning game $g$ (consumption values). We assume
that once consumers purchase a good, they will derive the same consumption value regardless of
whether it is new or used. This is to capture the idea that the goods considered in this research have
no physical depreciation. However, the decision to purchase used goods may be influenced by other
factors such as the availability of used goods, psychological costs for using pre-owned goods, etc. Let \( v^g(t, \tau) \) be consumer \( i \)'s single-period consumption value of owning game \( g \) at time \( t \) if he has owned game \( g \) for \( \tau \) periods prior to time \( t \). If he hasn’t purchased game \( g \), he will receive \( v^g(t, 0) \) if he purchases it at time \( t \).

Suppose that a consumer has not bought game \( g \) up to time \( t \). Consumer \( i \)'s single-period utility for purchasing decisions at time \( t \) is given by:

\[
u_{ijt}^g = \begin{cases} v^g(t, 0) - \alpha p_{1t}^g + \xi_{1t}^g + \epsilon_{1it}^g & \text{if purchasing a new copy (} j = 1 \text{)} \\
v^g(t, 0) - \alpha p_{2t}^g - l_Y(Y_t^g) + \xi_{2t}^g + \epsilon_{2it}^g & \text{if purchasing a used copy (} j = 2 \text{)} \\
l_C(C_t^g) + \epsilon_{0it}^g & \text{if no purchase (} j = 0 \text{)},\end{cases}
\]

where \( p_{1t}^g \) and \( p_{2t}^g \) are the prices of new and used copies of game \( g \) at time \( t \), respectively, and \( \alpha \) is the price-sensitivity. We restrict the price-sensitivity for new and used goods to be identical; \( \xi_{1t}^g \) and \( \xi_{2t}^g \) are iid unobserved demand shocks to new and used copies, respectively. We assume they are normally distributed with zero mean and the standard deviation \( \sigma_{\xi_j} \); \( Y_t^g \) is the inventory level of used copies for game \( g \) at retailers in period \( t \); \( l_Y(Y_t^g) \) is the one-time transaction cost that consumers incur when purchasing a used good (search costs, psychological costs for pre-owned games, etc.).

We specify \( l_Y(Y_t^g) = \lambda_0 + \lambda_1 \exp(-\lambda_2 Y_t^g) \) to capture the idea that search costs may depend on the availability of used copies by this term; \( C_t^g \) is the cumulative number of newly introduced games at time \( t \) since the introduction of game \( g \) (including the games released in the same week as game \( g \)); \( l_C(C_t^g) \) captures the competitive effect from other newly introduced games and is specified as \( l_C(C_t^g) = \pi_0 + \pi_1 \ln(C_t^g) \); \(( \xi_{shi}^g + \epsilon_{ijst}^g \) represents an idiosyncratic error \( (h \text{ indexes nest}) \), and we assume it is iid extreme value distributed.

We allow \( \epsilon_{ijt}^g \) to be correlated across options \( j \). We model the correlation in a nested logit framework. Let \( \epsilon_{ijt}^g = \xi_{shi}^g + (1 - \eta)\nu_{ijt}^g \) where \( h \text{ indexes nest and takes two possible values: } h = 1 \)

10Our assumption here is that once consumers overcome this psychological costs when they make a purchase decision, then the consumption value they receive in subsequent periods is not affected by the psychological costs

11Unobserved demand shocks may capture variations in publicity about game \( g \), sales of game \( g \)-related products (e.g., movies, cartoons, animations, etc.), economic recession, and so on.
groups the buying options (i.e., buying a new or used copy), and \( h = 0 \) is the no purchase option. Thus, the consumer buying decision problem here is equivalent to a two-stage decision making where consumers first decide whether or not to buy, and if buying, then consumers choose a new or used copy. In this setup, the parameter \( \eta \in [0, 1) \) measures the within-nest correlation.

Next, consider consumers’ selling decisions. Suppose that a consumer has bought game \( g \) and kept it for \( \tau \) periods prior to time \( t \). Consumer \( i \)’s single-period utility for selling decisions at time \( t \) is given by

\[
\begin{align*}
    w^g_{ikt}(\tau) &= \begin{cases} 
    \alpha r^g_t - \mu + \xi^g_{st} + e^g_{ikt} & \text{if selling (} k = 1 \text{)} \\
    v^g(t, \tau) + e^g_{ot} & \text{if keeping the game (} k = 0 \text{)}
    \end{cases}
\end{align*}
\]

where \( r^g_t \) is the resale value of game \( g \) at time \( t \); \( \mu \) captures any additional cost of selling (transaction costs, endowment effects, etc.); \( \xi^g_{st} \) is an iid unobserved shock to owners for selling decisions at time \( t \).\(^{12}\) We assume it is normally distributed with zero mean and the standard deviation, \( \sigma_{\xi_s} \); \( e^g_{ikt} \) is an idiosyncratic error, and we assume it is iid extreme value distributed.

For the single-period consumption value, \( v^g(t, \tau) \), we will assume the following parsimonious functional form. In the release period, we set \( v^g(1, 0) = \gamma_g \forall i \), where \( \gamma_g \) is the game-specific constant. To capture the depreciation of consumption values to potential buyers due to the aging of a game, we allow \( v^g(t, 0) \) to decay as a function of \( t \).\(^{13}\) Specifically, we model the depreciation rate as:

\[
v^g(t+1, 0) = (1 - \varphi_t)v^g(t, 0) \text{ where } \varphi_t = \frac{\exp(\phi_0 + \phi_1 \ln(t))}{1 + \exp(\phi_0 + \phi_1 \ln(t))}.
\]

We capture the depreciation of consumption values to owners due to satiation by modeling the depreciation rate as:

\[
v^g(t+1, \tau+1) = (1 - \kappa^g_{i\tau})v^g(t, \tau) \text{ where } \kappa^g_{i\tau} = \frac{\exp(X_{g\tau}^\prime \delta)}{1 + \exp(X_{g\tau}^\prime \delta)} \text{ and } X_{g\tau} \text{ includes observed product characteristics of game } g \text{ and the duration of ownership } (\tau).\(^{14}\)

\( ^{12}\)The unobserved shock to owners may capture variations in the economic situation, sales of newly introduced games and their related products, etc.

\( ^{13}\)We do not allow for the appreciation of consumption values, given that the length of our sample is at most one year.

\( ^{14}\)After trying several functional form, this parsimonious specification has so far fit the data best.
4.2 Value functions

Since the dynamic consumer selling decision is nested within the dynamic consumer purchasing decision through the expected future payoff, we start off by describing the dynamic consumer selling decision, and then describe the dynamic purchasing decision. To simplify the notation, we will drop $g$ superscript and $t$ subscript. Also, let $\xi_d = (\xi_1, \xi_2)$ be the unobserved demand shocks (as opposed to $\xi_s$, which is the unobserved shocks for selling decisions), and $\beta$ be the discount factor common across consumers.

Let $W_i(r, Y, \xi_s, t, \tau)$ be the value function of the consumer selling decision problem for consumer $i$. Note that other state variables $(p_1, p_2, C, \xi_d)$ will not enter here. The inventory level, $Y$, is included since it could affect the distribution of the future resale value. The Bellman equation is given by

$$W_i(r, Y, \xi_s, t, \tau) = E_e \max_{k \in \{0, 1\}} \{W_{ik}(r, Y, \xi_s, t, \tau) + e_{ikt}\},$$

where $W_{ik}$ is consumer $i$’s alternative-specific value functions given by

$$W_{ik}(r, Y, \xi_s, t, \tau) = \begin{cases} ar - \mu + \xi_s & \text{selling,} \\ v(t, \tau) + \beta E[W_i(r', Y', \xi_s', t + 1, \tau + 1)|(r, Y, \xi_s, t, \tau)] & \text{keeping.} \end{cases}$$

The expectation in $E[W_i(r', Y', \xi_s', t + 1, \tau + 1)|(r, Y, t, \tau)]$ is taken with respect to the future resale value ($r'$), inventory level ($Y'$), and unobserved shock for selling decision ($\xi'$).

Assuming that $e_{it}$ follows the iid extreme value distribution, the probability of selling the game by consumers at $(r, Y, \xi_s, t, \tau)$ is given by

$$Pr(k = 1|r, Y, \xi_s, t, \tau) = \frac{\exp(W_{i1}(r, Y, \xi_s, t, \tau))}{\sum_{k' = 0}^1 \exp(W_{ik'}(r, Y, \xi_s, t, \tau))}.$$ 

Next, consider the consumer purchasing decision. Let $V_i(p_1, p_2, r, Y, C, \xi_d, t)$ be the value function for a consumer who has not bought the game until time $t$. The Bellman equation is given by

$$V_i(p_1, p_2, r, Y, C, \xi_d, t) = E_e \max_{j \in \{0, 1, 2\}} \{V_{ij}(p_1, p_2, r, Y, C, \xi_d, t) + \epsilon_{ijt}\},$$
where $V_{ij}$ is consumer $i$'s alternative-specific value functions given by

$$V_{ij}(p_1, p_2, r, Y, C, \xi_d, t) = \begin{cases} v(t, 0) - \alpha p_1 + \xi_1 + \beta E[W_i(r', Y', \xi_s', t + 1, 1)|(r, Y, \xi_s, t, 0)] & \text{new copy } (j = 1), \\ v(t, 0) - \alpha p_2 + \xi_2 - l_Y(Y) + \beta E[W_i(r', Y', xo_s', t + 1, 1)|(r, Y, \xi_s, t, 0)] & \text{used copy } (j = 2), \\ l_C(C) + \beta E[V_i(p_1', p_2', r', Y', C', \xi_d', t + 1)|(p_1, p_2, r, Y, C, \xi_d, t)] & \text{no purchase } (j = 0), \end{cases}$$

where the expectation in $E[V_i(p_1', p_2', r', Y', C', \xi_d', t + 1)|(p_1, p_2, r, Y, C, \xi_d, t)]$ is taken with respect to the future prices of new and used goods ($p'_1, p'_2$), resale value ($r'$), inventory level ($Y'$), cumulative number of competing games ($C'$), and the unobserved shocks for the purchasing decision ($\xi_d'$).

Assuming that $\epsilon_{it}$ follows the iid extreme value distribution, the choice probability by consumers at $(p_1, p_2, r, Y, C, \xi_d, t)$ is given by

$$\Pr(j|p_1, p_2, r, Y, C, \xi_d, t) = \Pr(h = 1|p_1, p_2, r, Y, C, \xi_d, t) \cdot \Pr(j|h = 1, p_1, p_2, r, Y, C, \xi_d, t),$$

where

$$\Pr(h = 1|p_1, p_2, r, Y, C, \xi_d, t) = \frac{\sum_{j' = 1}^{2} \exp \left( \frac{V_{ij'}}{1-\eta} \right)^{1-\eta}}{\exp(V_{i0}) + \sum_{j' = 1}^{2} \exp \left( \frac{V_{ij'}}{1-\eta} \right)^{1-\eta}},$$

$$\Pr(j|h = 1, p_1, p_2, r, Y, C, \xi_d, t) = \frac{\exp \left( \frac{V_{ij}}{1-\eta} \right)}{\sum_{j' = 1}^{2} \exp \left( \frac{V_{ij'}}{1-\eta} \right)}.$$

Given a finite time horizon, the value functions for both purchasing and selling decisions can be computed by backward inductions from the terminal period $t = T$. We assume that at the terminal period, if a potential buyer buys or an owner keeps the game, then they will receive not only the single-period utility for the terminal period, but also the present discounted value of the future consumption values (but no selling option after the terminal period). We use another 100 periods to compute this present discounted value. We set $T = 100$. 

17
4.3 Aggregate sales

Let $M^d_t$ be the size of consumers who have not bought the video game. It evolves according to

$$M^d_{t+1} = M^d_t \left(1 - \sum_{j=1}^{2} \Pr(j|p_1, p_2, r, Y, C, \xi_d, t)\right) + N_{t+1},$$

where $N_{t+1}$ is the size of new consumers who enter the market at time $t + 1$.

Next, let $M^s_t(\tau)$ be the size of consumers who have bought and owned the video game for $\tau$ periods at time $t$. It evolves according to

$$M^s_{t+1}(\tau) = \begin{cases} M^d_t \sum_{j=1}^{2} \Pr(j|p_1, p_2, r, Y, \xi_d, t) & \text{if } \tau = 1, \\ M^s_t(\tau - 1) \cdot \Pr(k = 0|r, Y, \xi_s, t, \tau - 1) & \text{if } \tau > 1. \end{cases}$$

The aggregate sales is then given by

$$Q_j(p_1, p_2, r, Y, C, \xi_d, t) = M^d_t \Pr(j|p_1, p_2, r, Y, C, \xi_d, t) + \varepsilon_{jt}, \quad (1)$$

where $j = 1$ is new goods, and $j = 2$ is used goods, and $\varepsilon_{jt}$ represents a measurement error. The aggregate quantity sold by consumers is given by

$$Q_s(r, Y, \xi_s, t) = \sum_{\tau=1}^{t-1} M^s_t(\tau) \Pr(k = 1|r, Y, \xi_s, t, \tau) + \varepsilon_{st}, \quad (2)$$

where $\varepsilon_{st}$ represents a measurement error.

5 Estimation Strategy

The estimation of consumer preference parameters is carried out in two steps. In the first step, we recover the processes of used game prices, resale values, and inventory levels from the data. These processes will then be used to form consumers’ expectation about future price of used goods, resale value, and inventory level in the second step demand estimation, assuming that consumers have rational expectations. We model the processes of the price of used goods and the resale value to be

---

15In our application, this corresponds to the sales of the platform for the game at time $t + 1$.

16We assume that the price of new goods is exogenous and consumers expect that it remains constant over time.
a function of own lagged value, the lagged inventory level, and game characteristics, except for \( t = 2 \) where we assume that the initial price of used copies and resale value are a function of the price of new copies and game characteristics. We model the processes of the inventory level to be a function of its lagged value and game characteristics. The estimation results based on all 41 video games are reported in Tables 2 and 3.

In the second step, we estimate the dynamic discrete choice model with a finite time horizon. Notice that the price of used goods and resale value may be correlated with unobserved shocks. We propose a new estimation algorithm that extends the Bayesian MCMC algorithm in Imai et al. (2009a) (IJC algorithm) to a finite-horizon model, and combines it with the pseudo-policy function approach in Ching (2010a; 2010b) to control for the potential endogeneity problems. We will first describe the modified IJC algorithm.

### 5.1 Modified IJC algorithm

The IJC algorithm uses the Metropolis-Hastings algorithm to draw a sequence of parameter vectors from their posterior distributions. During the MCMC iterations, instead of fully solving for the value functions at each draw of parameter vectors as proposed in the nested fixed point algorithm (Rust 1987), the IJC algorithm partially solves for the value functions at each draw of parameter vectors (at the minimum, apply the Bellman operator only once), stores those partially solved value functions (they call those value functions *pseudo*-value functions), and uses them to nonparametrically approximate the expected value functions at the current trial parameter vector. Imai et al. (2009b) show that as the MCMC iterations and the number of past pseudo-value functions for approximating the expected value functions increase, pseudo-value functions will converge to the true value functions, and the posterior parameter draws based on the pseudo-value functions will also converge to the true

---

17 In order to model the consumption value as a function of time since release and time since purchase, we use a finite-horizon model.

18 Ching et al. (2010) provide a step-by-step guide for implementing the IJC algorithm.
One issue in applying the IJC algorithm in our framework is that the dynamic programming (DP) problem is non-stationary. However, the original IJC algorithm in Imai et al. (2009a) applies to stationary DP problems. Their algorithm is essentially an extension of the contraction mapping procedure for solving the stationary DP problem. In general, the computational advantage of using IJC to estimate a finite horizon DP problem may be limited. However, if the dynamic model has multiple continuous state variables, we argue that their idea for estimating DP models with continuous state variables (see Section 3.2 of Imai et al. 2009a) can be extended to help reduce the computational burden of integrating the continuation value even for finite-horizon non-stationary dynamic models. The main idea behind their algorithm for continuous state variables is to compute pseudo-value functions at one randomly drawn state in each iteration and store them. The set of past pseudo-value functions used in approximating the expected future values will then be evaluated at different state points. Thus, one can simply adjust the weight given to each of the past pseudo-value function by the transition density from the current state to the state at which the past pseudo-value function is evaluated. In our algorithm, the main differences from the original IJC algorithm are (1) pseudo-value functions are computed and stored for each time period, (2) in each MCMC iteration and in each time period, pseudo-value functions are computed only at one randomly drawn vector of continuous state variables, and (3) expected future values at time $t$ are approximated using the set of pseudo-value functions at time $t + 1$. Unlike conventional approaches, in which value functions need to be computed at all or a subset of pre-determined grid points in all periods (e.g., Rust 1997), the new algorithm computes pseudo-value functions at only one randomly drawn state point in each period and the integration of the continuation value with respect to continuous state variables can simply be done by the weighted average of past pseudo-value functions. Thus, it has the potential

---

19Imai et al. (2009b) shows that their algorithm converges under Gaussian kernel. Norets (2009) further shows that the IJC algorithm converges under nearest neighborhood kernel.
to reduce the computational burden. One drawback of our proposed algorithm is that it is very memory-intensive: past-value functions need to be stored period by period. However, this should not pose a serious problem as the cost of memory has been declining very quickly. We describe the details of the estimation procedure in Appendix A.1.

5.2 Pseudo-policy function approach

To control for the potential endogeneity problems of the price and resale value of used games, we follow the pseudo-policy function approach proposed by Ching (2010a; 2010b), which proposes to approximate the pricing policy functions as a polynomial of observed and unobserved state variables of the equilibrium model.\(^\text{20}\) Note that we assume that the price of new games is exogenous. In our model, the state space of the equilibrium model includes unobserved shocks \((\xi_{1t}, \xi_{2t}, \xi_{st})\), consumption values \((v(t, \tau))\), inventory level \((Y_t)\), cumulative number of newly introduced games \((C_t)\), the size of potential buyers \((M_{td}^t)\), and the size of owners for each duration of ownership \((M_{st}^t(\tau))\).

After experimenting several functional forms, instead of using high order polynomials, we decided to use the following specification for the price of used goods (for \(t \geq 2\)):

\[
\ln p_{2t} = \omega_{10} + \omega_{11}v(t, 0) + \omega_{12}\frac{1}{(t-1)} \sum_{\tau=1}^{t-1} v(t, \tau) + \omega_{13} (\xi_{2t} - \xi_{1t}) \\
+ \omega_{14} \xi_{st} + \omega_{15} M_{td}^t + \omega_{16}\frac{1}{(t-1)} \sum_{\tau=1}^{t-1} M_{st}^t(\tau) + \omega_{17} Y_t + \omega_{18} C_t + \nu_t^p,
\]

where \(\nu_t^p\) is the prediction error. Also, the pseudo-policy function for the resale value is specified as (for \(t \geq 2\)):

\[
\ln r_t = \omega_{20} + \omega_{21}v(t, 0) + \omega_{22}\frac{1}{(t-1)} \sum_{\tau=1}^{t-1} v(t, \tau) + \omega_{23} (\xi_{2t} - \xi_{1t}) \\
+ \omega_{24} \xi_{st} + \omega_{25} M_{td}^t + \omega_{26}\frac{1}{(t-1)} \sum_{\tau=1}^{t-1} M_{st}^t(\tau) + \omega_{27} Y_t + \omega_{28} C_t + \nu_t^r,
\]

\(^{20}\)This approach can also be applied to control for the potential endogeneity of advertising/detailing (e.g., Ching and Ishihara 2010)
where \( \nu'_t \) is the prediction error.

Note that \( Y_t \) in the two equations play a role of an instrument. \( Y_t \) is the inventory level of used games at retailers at the beginning of period \( t \). Thus, it is uncorrelated with \( \xi_t \)'s. However, it is reasonable to think that the price and resale value of used games at time \( t \) depend on the inventory level. Similarly, \( C_t \) could be included as an instrument. \( C_t \) is the cumulative number of newly introduced games since the release of the focal game. The introduction timing of games is rarely postponed once the release week has been reached. This is because copies of games are already manufactured before the release week. Thus, we expect \( C_t \) to be uncorrelated with \( \xi_t \)'s. However, \( C_t \) would likely affect \( p_2 \) and \( r \). On one hand, \( C_t \) could influence \( p_2 \) because it affects the demand for used copies of the focal game. On the other hand, \( C_t \) could affect \( r \) because owners of the focal game may be attracted to newly introduced games and choose to sell the focal game, which affect the supply of used copies of the focal game. Inclusion of these two exogenous observed state variables should help reduce the reliance of using functional form restrictions for identification.

Assuming measurement errors in the sales of new and used copies as well as the quantities sold by consumers to retailers, and prediction errors in the pseudo-pricing policy functions, we derive the joint likelihood of the demand-side model and the pseudo-policy functions. In the IJC algorithm described in the previous subsection, the joint likelihood will be used to compute the acceptance probabilities in the Metropolis-Hastings algorithm. Appendix A.2 describes the construction of the likelihood function.

5.3 Remark

Note that if consumers observe all the state variables and understand how the equilibrium prices are generated, then we could gain efficiency by using the pseudo-policy functions to form the consumers’ future price expectations as well. We decided not to take this approach for the following two reasons.
First, it is unclear if consumers are aware of all the state variables of the equilibrium model. In particular, it is difficult for consumers to obtain information about the size of potential buyers and owners for each duration of ownership at the time consumers make a purchasing or selling decision. Under such a situation, consumers may use a simple Markov process to forecast future prices and resale value (Erdem et al. 2003, Février and Wilner 2009). Second, if one uses the pseudo-policy functions to form the consumer price expectation, one needs to specify the state space for the dynamic consumer purchasing and selling decision model to be that of the equilibrium model (Nair 2007). Given that there are many more continuous state variables in the equilibrium model, including them will increase the computational burden of estimating the dynamic consumer purchasing and selling decision model dramatically.

6 Results

In estimating the dynamic model, we set the terminal period to be 100 (about two years). Also, at this point, we allow for two types of consumers who differ in their depreciation rate of potential buyers’ consumption values (i.e., \( \phi_i \)). In the Bayesian estimation algorithm, we set \( N = 1,000 \) (# past pseudo-value functions used for the approximation of the expected future value) and \( h = h_C = 0.01 \) (kernel bandwidth).

The estimation results are reported in Table 4. We estimate two versions; in one version (model w/o ppf), we do not control for the potential price endogeneity using the pseudo-policy function approach. In another version (full model), we control for the price endogeneity. We find that the estimates are qualitatively similar in the two versions. Below, we will only discuss the estimates from the full model.

We find that most of the parameter estimates are statistically significant. The estimated discount factor is 0.88. Recall that the unit of periods in our application is week. Thus, our estimate is much
lower than the discount factor translated from a weekly interest rate (≃ 0.999), which is typically assumed when a dynamic model does not have any exclusion restriction to help identify the discount factor. However, our result is consistent with previous studies in experimental/behavioral economics which also find that the discount factor is lower than the interest rate (e.g., Frederick et al. 2002).

Price-sensitivity ($\alpha$) is positive. Recall that the price enters the utility function as a negative term. Positive signs of $\lambda_1$ and $\lambda_2$ indicates that costs for purchasing used video games diminish as the inventory level rises. This is intuitive as the availability of used copies increases, the search costs for consumers may decrease. The parameter for the competitive effect from other games ($\pi_1$) is positive, suggesting that the increasing number of new game introduction may reduce the size of potential buyers who still consider purchasing the focal game.

Parameters for the depreciation rate to potential buyers include an type-specific intercept and a time effect. The estimated depreciation rate from the release week to the second week is about 41%. After estimating the structural model, we are able to convert the decline in the consumption value to potential buyers from the release week to the second week into a monetary term. Based on game-specific intercepts and the price coefficient, we find that on average, the consumption value to potential buyers declines by about JPY 4,000 (≃ USD 40) from the release week to the second week. Given that the average price of new copies is JPY 7,613 (USD 76), the decline is relatively large. However, a negative and large coefficient for the time effect suggests that the depreciation rate becomes almost zero after the second week.

For the depreciation rate of consumption values to owners, we include the following product characteristics in $X_{gr}$: an intercept, story-based game dummy, multi-player game dummy, critic rating and user rating. A positive coefficient of a variable implies that the variable will increase the depreciation rate to owners. Our estimates suggest that on average, multi-player games and games with a higher user rating exhibit a higher depreciation rate. On the other hand, story-based
games, and games with a higher critic rating exhibit a lower depreciation rate. Depending on product characteristics, the depreciation rate at $\tau = 1$ ranges from 64% to 88%. Finally, the coefficient for the duration of ownership suggests that the per-period depreciation rates become lower as consumers keep the game longer.

The parameters for pseudo-policy functions are reported in Table 5. While the consumption value to owners has a very little impact on both the price and the resale value of used games, the average consumption value to potential buyers has a positive impact. The difference in unobserved demand shocks between used and new games ($\xi_2 t - \xi_1 t$) and the unobserved supply shock to used game selling have a positive impact, but small for both the price and the resale value of used games. The size of potential buyers and the average size of owners have a positive impact. Finally, both the inventory level and the cumulative number of competing games have a negative impact on both the price and the resale value of used games.

6.1 Substitutability between new and used games

6.1.1 The cross-price elasticity of demand

One conventional way of examining the potential competition from used games is to examine the cross-price elasticity of demand/revenue for new goods with respect to the price of used goods (e.g. Ghose et al. 2006). Based on the estimates, we compute the average cross-price elasticity of single-period revenues for new games for the first 15 weeks (starting from the second week). Figure 4 plots the result. It shows that the cross-price elasticity is generally high; it starts at around 1, increases to around 4.5, and declines slowly afterwards. This finding suggests that new and used video games in Japan may be close substitutes, and the reason could be exactly due to the fact that video games physically depreciate very negligibly. One reason for the initially low elasticities is because of the high costs for purchasing used games. Unlike new copies, used copies are available at a retailer only
when other consumers sold their copies to the retailer. Thus, in the first few weeks consumers may think that the search costs are too high for purchasing used games and thus tend to buy new games. This results in a smaller cross-price elasticity. However, as the supply of used goods increases, the cross-price elasticity increases.

### 6.1.2 The inventory elasticity of demand

As our data on the trading volume of used goods suggest, used goods are supplied by a limited amount in the first few weeks after game release. This feature potentially creates a high search cost for finding a used copy and limits consumers’ ability to buy a used copy. It is of our interest then to examine how the change in the availability of used goods affect the sales of new and used goods. Previous studies on the substitutability between new and used goods do not incorporate the excess supply information about used goods, thus no prior research has investigated the importance of the inventory level of used goods. After incorporating the excess supply information and estimating its impact on the utility function for used game purchase ($\lambda_1, \lambda_2$), we are able to quantify its impact on the substitutability between new and used games.

To quantify the economic significance of $\lambda_1$ and $\lambda_2$, we first examine the inventory elasticity of used-game sales, i.e., the percentage change in used-game sales due to one percent change in the inventory level, from week 3 to 15 (note that the inventory level is zero for the first two weeks by construction). We find that the average inventory elasticity of used-game sales is 0.291. The elasticity is initially high (around 0.7) and then starts to decline over time. Compared to the own-price elasticity of used-game sales (-4.61), the inventory elasticity of used-game sales turns out to be smaller. Next, we examine the inventory elasticity of new-game revenues. This analysis provides us with the insights for how an increase in the availability of used games induces consumers to switch from new games to used games. In Figure 5, we plot the percentage changes in new-game
revenues from week 3 to 15. The figure shows that elasticities initially increases in absolute value, but declines afterwards. The results suggest that while the change in the availability of used goods has a non-negligible impact on consumers’ buying decisions, the impact is small relative to that of prices.

6.1.3 The price elasticity of used-game supply

An important factor that determines the inventory level of used games is the resale value. While a higher resale value will lower retailers’ profit-margin, it will induce more consumers to sell their games and increase the inventory level of used games. This in turn may then increase the sales of used games. Therefore, it is of retailers’ interest to examine the price elasticity of used-game supply with respect to the resale value. Figure 6 shows the results. The average price elasticity of used-game supply is initially around 3 and declines over time.

6.2 Elimination of used markets

Video game publishers often claim that the existence of used game markets lowers the sales of new games. The claim is often based on the conjecture that if there were no used game market, most of the consumers who used to purchase a used copy would buy a new copy. In the previous section, we examine this conjecture and find that consumers may indeed switch to new games because of the high substitutability between new and used goods measured by the cross-price elasticities.

However, the role of used game markets for consumers is not to simply offer a cheaper alternative. It also serves as a place for them to sell games that they no longer want to keep. If the used game market shuts down, it is possible that consumers demand even less new games because the future value from purchasing a new game could be lowered due to the lack of selling opportunities. The analysis on the elasticity commonly used to examine the substitutability between new and used games cannot take this important factor into account. After estimating the dynamic structural model, we
are able to quantify the overall impact for new-game revenues due to the existence of the used game market.

To examine the impact of eliminating used video game markets, we simulate the model by setting the parameters that capture the transition costs of purchasing and selling used games ($\lambda_0$ and $\mu$) to be large so that the used game market shuts down in effect. In the current experiment, we simply take the observed price of new games as given. In general, the optimal price of new games in the absence of the used game market could be very different from the flat-pricing strategy we observe in the data. However, it is still of video game publishers’ interest to examine how the elimination of the used game market changes the total revenue for new games given the current flat-pricing scheme.

Based on the simulation, we compute the statistics on the percentage change in the revenue for new games due to the elimination of the used game market. Table 6 shows the statistics. One average across games, the new-game revenue increases by 2%, but about half of the games actually exhibit a reduction in the revenue. This result suggests that while the high substitutability between new and used goods certainly help increase the sales of new copies, the lack of the future selling opportunity does play an important role in determining consumers’ purchasing decisions as well. The examination of the change in new-game demand over time suggests that the quantity demanded for new games actually declines right after the game release. However, after the first few weeks, it increases. The initial decline is due to the lowered future value from purchasing: when the resale value is still high, consumers’ purchasing decision is critically influenced by the future selling opportunity. The increasing trend in quantity demanded for new games reflects the fact that after the resale value of used games drops, it is no longer important for consumers to have the future selling opportunity as they probably keep the game even in the presence of the used game market. Thus, the elimination of the used game market will be profitable for video game publishers in the later periods.

Recall that the results here are based on the observed flat-pricing strategy. If we allow video game
publishers to choose the price of new games optimally over time, the results could reverse. However, if the conventional flat-pricing strategy is due to some institutional constraints in the industry and it is too costly to change the price of new games after release, the result here could be a good approximation for the actual impact of the used game market on new-game revenues.

6.3 Is the flat-pricing strategy optimal?

As mentioned repeatedly in this paper, one interesting fact in the Japanese video game industry is that video game publishers typically keep the price of new copies constant over time. This is in contrast to the price-skimming strategy employed in the US video game industry or in typical durable goods markets. Although investigating why they employ a flat-pricing strategy is beyond the scope of this paper, it is interesting to investigate whether the observed flat-pricing strategy is optimal.

To investigate the optimality of the flat-pricing strategy, we run a counterfactual experiment in which video game publishers marginally reduce the price of new games over time, fixing the price and resale value of used at observed values. More specifically, we reduce the price of new copies by 0.1% in each period, simulate the model, and compute the change in total revenue for new copies.

Table 7 reports the summary statistics on the percentage change in the total revenue for new games. First, we find that the “marginal price-skimming” strategy is on average more beneficial than the flat-pricing strategy: it increases the total revenue by 0.5%. Given that the median revenues of the games in our data set is about 65 million US dollars, this amounts to an increase in total revenues by 0.33 million US dollars.

However, of 20 games in our sample, there are several games that exhibit a decline in total revenues after switching to the marginal price-skimming. In the future research, it is interesting to

\[21\] It is possible that the complex structure of the distribution system in Japan (many middlemen between manufacturers and retailers) makes retailers’ profit-margin from new games very thin, which makes it difficult for manufacturers to provide incentives for retailers to lower the price over time.
find out if this is the case for some video games in the Japanese video game industry by developing an equilibrium model and examining the optimal pricing strategy for video game publishers and retailers.

7 Conclusion

Our estimation results show that (1) the depreciation rate of consumption values to potential buyers from the release week to the 2nd week is about 41% but becomes close to zero after the 2nd week; and (2) the depreciation rate of consumption values to owners after owning for one week ranges from 64% to 88% depending on product characteristics, but it becomes smaller and smaller as the duration of ownership increases. Consumption values to owners become less than one percent of the initial value after consumers own the game for 3 to 7 weeks. Using the parameter estimates, we examine three types of demand and supply elasticities They measure (a) the impact of used-game prices on new-game demand; (b) the impact of used-game inventory levels on new- and used-game demand; and (c) the impact of used-game resale values on used-game supply. The first type of elasticity is a standard measure for the substitutability. The second and third types have never been examined in the previous literature, and they can provide important insights as to how an increase in the availability of used games affects new-game revenues. Furthermore, we quantify the impact of eliminating the used video game market on new-game revenues. We find that the elimination of the used video game market increases the total revenue for a new game by 2% on average, if video game publishers do not adjust their pricing strategies. However, about half of the games experience a reduction in new-game revenues after the elimination of the used video game market. This is mainly because the elimination of the used market also eliminates the future selling opportunity for consumers and reduces the demand for new games, especially in the earlier periods. This suggests that the existence of the used video game market in Japan could be beneficial to video game publishers. Finally, we
examine the optimality of the conventional flat-pricing strategy used by video game publishers in Japan. We simulate the model by marginally reducing the price of new games over time (as in the pricing-skimming strategy), and compare its profitability to that of the flat-pricing strategy. The result suggests that this marginal price-skimming strategy increases the total revenue for a new game by 0.5% on average.

Like any other research, this research also has limitations. First, for the current results, we do not control for other marketing variables such as advertising. It is possible that high sales in the release week could be due to a high amount of pre-release advertising. Without controlling for advertising, it is possible that our estimate for the depreciation of consumption values to potential buyers could be biased upwards. We have obtained weekly TV advertising data and plan to control for its impact on demand.

Second, we do not explicitly model the competition among different video games. In our model, the competition is captured in a reduced-form fashion through the cumulative number of newly introduced games since the release of the focal game. However, if the substitutability between two games is mainly determined through product characteristics, our approach suffers from misspecification bias. There are two reasons why we take the reduced-form approach. First, Nair (2007) finds in the US video game market data that the substitutability between different games is generally low. Second, the focus of this paper is to examine the substitutability between new and used versions of the same game. Thus, we believe that the substitutability across different games is of second-order importance.

Third, and related, we do not allow for the impact of newly introduced games on consumer selling decisions. It is possible that when a new game is released, some consumers may sell their own games to finance the new game. We plan to model this effect in the new estimation result. Finally, in the counterfactual experiment for the elimination of used goods markets, we plan to compute the
optimal pricing strategy by video game publishers and show the change in new-game revenues.

This paper focuses on developing and estimating the dynamic structural demand model. In the future, we plan to combine the proposed demand-side model with the dynamic supply-side model where video game publishers compete with used game retailers. Such an extension allows us to investigate the optimal pricing strategy of video game publishers in the presence of the used game market.
References


Chen, Jiawei, Susanna Esteban, Matthew Shum. 2010. How Much Competition is a Secondary Market. Working Paper, Department of Economics, University of California, Irvine.


Table 1: Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>S.D.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of new copies (in JPY)</td>
<td>7,613.1</td>
<td>629.1</td>
<td>7,140</td>
<td>9,240</td>
</tr>
<tr>
<td>Price of used copies (in JPY)</td>
<td>4,515.3</td>
<td>1,087.8</td>
<td>2,219</td>
<td>7,433</td>
</tr>
<tr>
<td>Resale value of used copies (in JPY)</td>
<td>2,828.1</td>
<td>1,182.7</td>
<td>1,036</td>
<td>6,547</td>
</tr>
<tr>
<td>Sales of new copies</td>
<td>100,650.4</td>
<td>259,022.3</td>
<td>2,772</td>
<td>2,236,881</td>
</tr>
<tr>
<td>Sales of used copies</td>
<td>7,184.6</td>
<td>6,478.8</td>
<td>458</td>
<td>62,734</td>
</tr>
<tr>
<td>Quantity sold by consumers</td>
<td>8,121.4</td>
<td>8,436.8</td>
<td>1,012</td>
<td>55,830</td>
</tr>
<tr>
<td>Inventory of used copies</td>
<td>31,022.5</td>
<td>28,347.7</td>
<td>0</td>
<td>129,462</td>
</tr>
<tr>
<td>Market size (installed base)</td>
<td>14,866,067.6</td>
<td>6,097,167.2</td>
<td>746,971</td>
<td>20,822,775</td>
</tr>
<tr>
<td>Weekly # new game introduction</td>
<td>7.01</td>
<td>4.02</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Dummy for story-based games</td>
<td>0.700</td>
<td>0.470</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dummy for multi-player games</td>
<td>0.450</td>
<td>0.510</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Critic rating (in 10-point scale)</td>
<td>8.99</td>
<td>0.656</td>
<td>7.75</td>
<td>10</td>
</tr>
<tr>
<td>User rating</td>
<td>56.4</td>
<td>9.20</td>
<td>41.6</td>
<td>67.4</td>
</tr>
</tbody>
</table>

Note: USD 1 ≈ JPY 100

* user rating is a standardized score against a set of video games released in the same year (by Enterbrain, Inc.)
Table 2: Regressions for the price of used games and resale value \( (t = 2) \)

<table>
<thead>
<tr>
<th>variable</th>
<th>price of used copies</th>
<th></th>
<th>resale value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>estimate</td>
<td>s.e.</td>
<td>estimate</td>
<td>s.e.</td>
</tr>
<tr>
<td>price of new copies</td>
<td>0.784*</td>
<td>0.083</td>
<td>0.839</td>
<td>0.129</td>
</tr>
<tr>
<td>dummy for story-based games</td>
<td>208.9</td>
<td>114.9</td>
<td>100.5</td>
<td>177.8</td>
</tr>
<tr>
<td>dummy for multi-player games</td>
<td>150.1</td>
<td>120.3</td>
<td>140.4</td>
<td>186.2</td>
</tr>
<tr>
<td>critic rating</td>
<td>127.0</td>
<td>85.5</td>
<td>132.4</td>
<td>132.3</td>
</tr>
<tr>
<td>user rating</td>
<td>-12.8</td>
<td>6.31</td>
<td>-13.4</td>
<td>9.76</td>
</tr>
<tr>
<td>constant</td>
<td>-548.2</td>
<td>732.2</td>
<td>-1899.6</td>
<td>1133.2</td>
</tr>
</tbody>
</table>

Adjusted R-squared: 0.921

# observations: 20

Note: * p < 0.05

Table 3: Regressions for the price of used games, resale value, and inventory level \( (t > 2) \)

<table>
<thead>
<tr>
<th>variable</th>
<th>price of used copies</th>
<th></th>
<th>resale value</th>
<th></th>
<th>inventory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>estimate</td>
<td>s.e.</td>
<td>estimate</td>
<td>s.e.</td>
<td>estimate</td>
<td>s.e.</td>
</tr>
<tr>
<td>lagged value</td>
<td>0.958*</td>
<td>0.005</td>
<td>0.928*</td>
<td>0.005</td>
<td>0.958*</td>
<td>0.006</td>
</tr>
<tr>
<td>lagged inventory</td>
<td>-2.22E-03*</td>
<td>2.39E-04</td>
<td>-1.71E-03*</td>
<td>2.45E-04</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dummy for story-based games</td>
<td>5.44</td>
<td>16.5</td>
<td>-26.6</td>
<td>16.8</td>
<td>1581.9*</td>
<td>472.5</td>
</tr>
<tr>
<td>dummy for multi-player games</td>
<td>-18.1</td>
<td>17.4</td>
<td>-14.3</td>
<td>17.7</td>
<td>-470.7</td>
<td>497.4</td>
</tr>
<tr>
<td>critic rating</td>
<td>29.0*</td>
<td>10.8</td>
<td>28.0*</td>
<td>11.0</td>
<td>1214.4*</td>
<td>306.8</td>
</tr>
<tr>
<td>user rating</td>
<td>-2.26*</td>
<td>0.731</td>
<td>-0.876</td>
<td>0.744</td>
<td>-93.8*</td>
<td>20.85</td>
</tr>
<tr>
<td>constant</td>
<td>54.6</td>
<td>97.8</td>
<td>-14.6</td>
<td>97.3</td>
<td>-4376.2</td>
<td>2733.4</td>
</tr>
</tbody>
</table>

Adjusted R-squared: 0.987

# observations: 647

Note: * p < 0.05
Table 4: Demand estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Full Model</th>
<th></th>
<th>Model w/o PPF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard Deviation</td>
<td>Mean</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>discount factor (β)</td>
<td>0.878</td>
<td>0.001</td>
<td>0.897</td>
<td>0.002</td>
</tr>
<tr>
<td>price sensitivity (α)</td>
<td>5.99E-04</td>
<td>2.52E-05</td>
<td>5.94E-04</td>
<td>1.21144E-05</td>
</tr>
<tr>
<td>costs for buying used goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept (λ₀)</td>
<td>0.060</td>
<td>0.012</td>
<td>0.319</td>
<td>0.015</td>
</tr>
<tr>
<td>inventory (λ₁)</td>
<td>1.36</td>
<td>0.000</td>
<td>1.36</td>
<td>2.40E-04</td>
</tr>
<tr>
<td>inventory (λ₂)</td>
<td>2.94E-04</td>
<td>7.72E-05</td>
<td>3.10E-04</td>
<td>8.21E-05</td>
</tr>
<tr>
<td>costs for selling used goods (μ)</td>
<td>5.97</td>
<td>0.075</td>
<td>5.97</td>
<td>0.043</td>
</tr>
<tr>
<td>seasonal dummies (γ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>golden week (early May)</td>
<td>0.101</td>
<td>0.014</td>
<td>0.030</td>
<td>0.032</td>
</tr>
<tr>
<td>christmas (late Dec.)</td>
<td>0.297</td>
<td>0.016</td>
<td>0.208</td>
<td>0.016</td>
</tr>
<tr>
<td>no-purchase option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept (π₀)</td>
<td>-0.461</td>
<td>0.083</td>
<td>-0.574</td>
<td>0.080</td>
</tr>
<tr>
<td>competitive effects from other games (π₁)</td>
<td>0.333</td>
<td>0.019</td>
<td>0.309</td>
<td>0.022</td>
</tr>
<tr>
<td>depreciation rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potential buyers (φ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>-0.382</td>
<td>0.112</td>
<td>-0.582</td>
<td>0.122</td>
</tr>
<tr>
<td>time since release</td>
<td>-6.20</td>
<td>0.14</td>
<td>-7.80</td>
<td>0.21</td>
</tr>
<tr>
<td>game owners (δ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intercept</td>
<td>0.547</td>
<td>0.028</td>
<td>0.706</td>
<td>0.039</td>
</tr>
<tr>
<td>story-based game</td>
<td>-0.389</td>
<td>0.018</td>
<td>-0.232</td>
<td>0.016</td>
</tr>
<tr>
<td>multi-player game</td>
<td>0.611</td>
<td>0.010</td>
<td>0.678</td>
<td>0.034</td>
</tr>
<tr>
<td>critic rating</td>
<td>-0.026</td>
<td>0.011</td>
<td>-0.036</td>
<td>0.027</td>
</tr>
<tr>
<td>user rating</td>
<td>0.016</td>
<td>0.002</td>
<td>0.012</td>
<td>0.005</td>
</tr>
<tr>
<td>ownership duration (logged)</td>
<td>-0.484</td>
<td>0.015</td>
<td>-0.551</td>
<td>0.019</td>
</tr>
<tr>
<td>parameters for error terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within-group correlation (η)</td>
<td>0.534</td>
<td>0.090</td>
<td>0.557</td>
<td>0.045</td>
</tr>
<tr>
<td>s.d.(ε₁)</td>
<td>91640.4</td>
<td>12427.2</td>
<td>87128.9</td>
<td>11474.2</td>
</tr>
<tr>
<td>s.d.(ε₂)</td>
<td>4404.4</td>
<td>232.3</td>
<td>3417.6</td>
<td>166.0</td>
</tr>
<tr>
<td>s.d.(ε₃)</td>
<td>1645.5</td>
<td>183.5</td>
<td>1456.8</td>
<td>174.9</td>
</tr>
<tr>
<td>s.d.(ξ₁)</td>
<td>0.997</td>
<td>0.117</td>
<td>0.549</td>
<td>0.102</td>
</tr>
<tr>
<td>s.d.(ξ₂)</td>
<td>0.343</td>
<td>0.054</td>
<td>0.236</td>
<td>0.035</td>
</tr>
<tr>
<td>s.d.(ξ₃)</td>
<td>0.274</td>
<td>0.014</td>
<td>0.259</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Table 5: Estimates for pseudo-policy functions

<table>
<thead>
<tr>
<th>pseudo-pricing policy function parameters</th>
<th>price of used goods</th>
<th>resale value of used goods</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>intercept (( \omega_0 ))</strong></td>
<td>7.78</td>
<td>6.56</td>
</tr>
<tr>
<td><strong>consumption value for potential buyers (( \omega_1 ))</strong></td>
<td>0.221</td>
<td>0.393</td>
</tr>
<tr>
<td><strong>average consumption value for owners (( \omega_2 ))</strong></td>
<td>-0.055</td>
<td>0.027</td>
</tr>
<tr>
<td><strong>unobserved shock to buying (( \omega_3 ))</strong></td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td><strong>unobserved shock to selling (( \omega_4 ))</strong></td>
<td>0.005</td>
<td>0.08</td>
</tr>
<tr>
<td><strong>size of potential buyers (( \omega_5 ))</strong></td>
<td>1.23E-08</td>
<td>1.62E-04</td>
</tr>
<tr>
<td><strong>average size of owners (( \omega_6 ))</strong></td>
<td>1.67E-07</td>
<td>3.21E-08</td>
</tr>
<tr>
<td><strong>inventory of used goods (( \omega_7 ))</strong></td>
<td>-2.76E-06</td>
<td>-5.25E-06</td>
</tr>
<tr>
<td><strong>cumulative # competing games (( \omega_8 ))</strong></td>
<td>-2.05E-03</td>
<td>-4.003</td>
</tr>
<tr>
<td>s.d. (( \sigma^2 ))</td>
<td>0.100</td>
<td>0.174</td>
</tr>
</tbody>
</table>

Table 6: The percentage change in the total revenue of new games due to the elimination of used games

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>S.D.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>% change in total revenues</td>
<td>2.10%</td>
<td>10.55%</td>
<td>-16.94%</td>
<td>27.11%</td>
</tr>
</tbody>
</table>

Table 7: The percentage change in the total revenue of new games from switching to the marginal price-skimming strategy

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>S.D.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>% change in total revenues</td>
<td>0.54%</td>
<td>1.15%</td>
<td>-3.99%</td>
<td>3.29%</td>
</tr>
</tbody>
</table>
Figure 1: Average quantities demanded for new video games

Figure 2: Average quantities demanded and supplied and inventory level for used video games
Figure 3: Average price and resale value of used video games

Figure 4: Cross-price elasticity of new-game revenues
Figure 5: Inventory elasticity

Figure 6: Elasticity of used-game supply
A Appendix

A.1 The procedure for the estimation algorithm

This appendix describes the details for the estimation algorithm described in section 5.1.

Let $\theta_d$ and $\theta_s$ be the vectors of demand-side parameters and pseudo-policy function parameters, respectively. In the context of the present model, the output of the new algorithm in iteration $m$ is

$$H^m = \{\theta_d^l, \theta_s^l, \theta_d^{l\prime}, \{\tilde{V}^l(p_1, \tilde{p}_{2t}, \tilde{r}_t, \tilde{Y}_t, \tilde{C}_t; \xi_d, t; \theta_d^{l\prime})\}_{t=2}^T, \{\{\tilde{W}^l(\tilde{r}_t, \tilde{Y}_t, \xi_s, t, \tau; \theta_d^{l\prime})\}_{t=1}^{T-1}\}_{T=2}^{m-1} \}_{t=m-N},$$

where $\tilde{V}^l$ and $\tilde{W}^l$ are the pseudo-value functions for purchasing and selling decisions in iteration $l$, respectively; $N$ is the number of past pseudo-value functions used for approximating the expected future value functions; $\theta_d^l$ and $\theta_s^l$ are the accepted parameter vectors of the demand-side model and the pseudo-policy functions in iteration $l$, respectively; $\theta_d^{l\prime}$ is the candidate parameter vector for the demand-side model in iteration $l$; $(\tilde{p}_{2t}, \tilde{r}_t, \tilde{Y}_t, \tilde{C}_t)$ are a draw of (serially correlated) state vector at time $t$ in iteration $l$ (e.g., drawn from uniform distribution); $(\tilde{\xi}_d, \tilde{\xi}_s)$ are drawn from the corresponding normal distributions. At this point, we assume $(\tilde{\xi}_d, \tilde{\xi}_s)$ are iid across time, and thus we can (1) use the same draws for all periods, and (2) the integration of unobserved shocks can be done by the simple average of the past pseudo-value functions.

The pseudo-value functions for selling decision at time $t$ in iteration $m$ are defined as follows:

$$\tilde{W}^m(\tilde{r}_t^m, \tilde{Y}_t^m, \tilde{\xi}_s^m, t, \tau; \theta_d^{sm}) = E_e \max\{\tilde{W}^m_0(\tilde{r}_t^m, \tilde{Y}_t^m, \tilde{\xi}_s^m, t, \tau; \theta_d^{sm}) + \epsilon_{i0t}, \tilde{W}^m_1(\tilde{r}_t^m, \tilde{Y}_t^m, \tilde{\xi}_s^m, t, \tau; \theta_d^{sm}) + \epsilon_{i1t}\},$$

where $\tilde{W}^m_k$’s are the pseudo alternative-specific value functions in iteration $m$, which are given by

$$\tilde{W}^m_k(\tilde{r}_t^m, \tilde{Y}_t^m, \tilde{\xi}_s^m, t, \tau; \theta_d^{sm}) = \begin{cases} \alpha \tilde{r}_t^m - \mu + \tilde{\xi}_s^m & \text{selling,} \\ v(t, \tau) + \beta \tilde{E}^m(W(r', Y', \xi'_s, t + 1, \tau + 1; \theta_d^{sm})|(\tilde{r}_t^m, \tilde{Y}_t^m, \tilde{\xi}_s^m, t, \tau)) & \text{keeping.} \end{cases}$$
The pseudo-expected future value function for selling decision, \( \hat{E}^m[W(\cdot; \hat{\theta}_d^m)|.] \), is defined as the weighted average of the past pseudo-value functions for selling decision in period \( t+1 \). It is constructed as follows:

\[
\hat{E}^m[W(r', Y', \xi'_s, t + 1, \tau + 1; \theta_d^m)|\{\bar{r}^m_t, \bar{Y}^m_t, \bar{\xi}^m_t, t, \tau\}] = \sum_{l=m-N}^{m-1} \hat{W}^*(\bar{r}^l_{t+1}, \bar{Y}^l_{t+1}, \bar{\xi}^l_s, t + 1, \tau + 1; \theta_d^l) \frac{K_h(\theta_d^m - \theta_d^l)f(\bar{r}^l_{t+1}, \bar{Y}^l_{t+1}|\theta_d^l)}{\sum_{q=m-N}^{m-1} K_h(\theta_d^m - \theta_d^q)f(\bar{r}^q_{t+1}, \bar{Y}^q_{t+1}|\theta_d^q)},
\]

where \( K_h(.) \) is a Gaussian kernel with bandwidth \( h \), and \( f(.,.) \) is the transition density estimated in the first step. Note that the kernel captures the idea that one assigns higher weights to the past pseudo-value functions which are evaluated at parameter vectors that are closer to \( \theta_d^m \). Also, this weighted average integrates out both \( \xi'_s \) and \( r' \). In particular, \( \xi'_s \) is integrated out by the simple average since \( \xi'_s \)'s are drawn from its distribution. In contrast, \( r' \) is integrated out by the weighted average, where weights are given by the transition probability.

The pseudo-value functions for the purchasing decision at time \( t \) in iteration \( m \) are defined as follows:

\[
\hat{V}(p_1, \tilde{p}_2^m; \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t, \tilde{\xi}_d^m, t; \theta_d^m) = E_{\xi'} \max\{\hat{V}_0^m(p_1, \tilde{p}_2^m, \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t; \theta_d^m) + \zeta_{0t} + \epsilon_{0t}, \hat{V}_1^m(p_1, \tilde{p}_2^m, \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t; \theta_d^m) + \zeta_{1t} + \epsilon_{1t}, \hat{V}_2^m(p_1, \tilde{p}_2^m, \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t; \theta_d^m) + \zeta_{2t} + \epsilon_{2t}\},
\]

where \( \hat{V}_j^m \)'s are type-\( i \) consumer’s pseudo alternative-specific value functions in iteration \( m \), which are given by

\[
\hat{V}_j^m(p_1, \tilde{p}_2^m; \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t, \tilde{\xi}_d^m, t; \theta_d^m) = \begin{cases} v(t, 0) - \alpha p_1 + \xi_1^m + \beta \hat{E}_m[W_i(r', Y', \xi'_s, t + 1, 1; \theta_d^m)|\{\bar{r}^m_t, \bar{Y}^m_t, \bar{\xi}^m_t, t, 0\}] & \text{new copy,} \\
(\bar{v}(t, 0) - \alpha \bar{p}_2^m + \xi_2^m - \lambda Y)|_C(\bar{C}_t^m) + \beta \hat{E}_m[W_i(r', Y', \xi'_s, t + 1, 1; \theta_d^m)|\{\bar{r}^m_t, \bar{Y}^m_t, \bar{\xi}^m_t, t, 0\}] & \text{used copy,} \\
(\bar{v}(t, 0) - \alpha \bar{p}_2^m + \xi_2^m - \lambda Y)|_C(\bar{C}_t^m) + \beta \hat{E}_m[V_i(p_1, \bar{p}_2^m, r', Y', C', \xi'_d, t + 1; \theta_d^m)|\{p_1, \tilde{p}_2^m, \bar{r}^m_t, \bar{Y}^m_t, \bar{C}^m_t, \tilde{\xi}_d^m, t\}] & \text{no purchase.} \end{cases}
\]

The pseudo-expected future value function for the purchasing decision, \( \hat{E}^m[V(\cdot; \theta_d^m)|.] \), is defined as the weighted average of the past pseudo-value functions for the purchasing decision in period \( t + 1 \),
and is constructed as follows:

$$
\hat{E}^{m}[V(p_1, p'_2, r', Y', C', \xi'_d, t + 1; \theta^{m}_d)](p_1, \tilde{p}^{m}_{2t}, \tilde{r}^{m}_t, \tilde{Y}^{m}_t, \tilde{C}^{m}_t, \tilde{\xi}^{m}_t, t)]
$$

$$= \sum_{l=m-N}^{m-1} \hat{V}(p_1, \tilde{p}^{l}_{2t+1}, \tilde{r}^{l}_{t+1}, \tilde{Y}^{l}_{t+1}, \tilde{C}^{l}_{t+1}, \tilde{\xi}^{l}_{d}, t + 1; \theta^{l}_d)
$$

$$\times \frac{K_h(\theta^{m}_d - \theta^{l}_d)K_{hC}(\tilde{C}^{m}_t + N_C - \tilde{C}^{l}_{t+1})f(\tilde{p}^{m}_{2t+1}, \tilde{r}^{m}_t, \tilde{Y}^{m}_t)\sum_{q=m-N}^{m-1} K_h(\theta^{m}_d - \theta^{q}_d)K_{hC}(\tilde{C}^{m}_t + N_C - \tilde{C}^{q}_{t+1})f(\tilde{p}^{q}_{2t+1}, \tilde{r}^{q}_t, \tilde{Y}^{q}_t)}{\sum_{q=m-N}^{m-1} K_h(\theta^{m}_d - \theta^{q}_d)K_{hC}(\tilde{C}^{m}_t + N_C - \tilde{C}^{q}_{t+1})f(\tilde{p}^{q}_{2t+1}, \tilde{r}^{q}_t, \tilde{Y}^{q}_t)}.
$$

Note again that this weighted average integrates out $p'_2$, $r'$, $Y'$, and $\xi'_d$. The assumption that consumers know the evolution of $C$ implies that the transition of $C$ is deterministic ($E[C'|C] = C + N_C$).

We handle this by a kernel-based local interpolation approach by Imai et al. (2009a), where $K_{hC}$ is the kernel function for $C$ with bandwidth $h_C$.

Each MCMC iteration in the proposed algorithm consists of five blocks:

1. Draw $\sigma^{m}_\xi = (\sigma_\xi, \sigma_\xi^2, \sigma_\xi^3)$ directly from their posterior distributions conditional on $\xi^{m-1}_t = (\xi^{m-1}_{1t}, \xi^{m-1}_{2t}, \xi^{m-1}_{3t})$ for all observed $t$ and $g$.

2. Draw $\xi^{m}_t$ for all observed $t$ and $g$ conditional on the data, $\sigma^{m}_\xi$, $\theta^{m-1}_d$ and $\theta^{m-1}_s$. In the Metropolis-Hastings algorithm, the joint-likelihood of the demand-side model and the pseudo-policy functions will be used to compute the acceptance probability.

3. Draw $\theta^{m}_d$ conditional on the data, $\{\xi^{m}_t\}$ and $\theta^{m-1}_s$ using the random-walk Metropolis-Hastings algorithm. In the Metropolis-Hastings algorithm, the joint-likelihood will be used.

4. Draw $\theta^{m}_s$ conditional on the data, $\{\xi^{m}_t\}$ and $\theta^{m}_d$ using the random-walk Metropolis-Hastings algorithm. In the Metropolis-Hastings algorithm, only the likelihood of the pseudo-policy functions will be used since $\theta^{m}_s$ does not enter the demand-side model.

5. Compute the pseudo-value functions for purchasing and selling decision problems. Starting from the terminal period, We sequentially compute the pseudo-value functions backwards at only one randomly drawn state point in each period. We store them and update $H^{m}$ to $H^{m+1}$.
In deriving the posterior distribution of parameters, we use an inverted gamma prior on $\sigma_\xi$, and a flat prior on $\theta_d$ and $\theta_s$. Also, note that the likelihood used in the IJC algorithm is called pseudo-likelihood as it is a function of pseudo alternative-specific value functions. Below, we provide a step-by-step procedure for the five blocks described above.

1. Suppose that we are at iteration $m$. We start with

$$H^m = \{\theta^l_d, \theta^s_d, \theta^s_l, \{\tilde{V}^l(p_1, \tilde{b}_1^l, \tilde{r}_t^l, \tilde{C}_t^l, \tilde{d}_t^l, \theta^s_l)\}_{t=2}^T, \{\tilde{W}^l(\tilde{r}_t^l, \tilde{R}_t^l, \tilde{d}_s^l, t, \tau; \theta^s_l)\}_{\tau=1}^{t-1} \}_{t=2}^{t=m-N},$$

where $N$ is the number of past iterations used for the expected future value approximation.

2. Draw $\sigma^m_\xi = (\sigma_{\xi_1}, \sigma_{\xi_2}, \sigma_{\xi_s})$ directly from their posterior distributions (inverted gamma) conditional on $\xi^{g,m-1}_t = (\xi^{g,m-1}_{1t}, \xi^{g,m-1}_{2t}, \xi^{g,m-1}_{st})$ for all observed $t$ and $g$.

3. For each observed $t$ and $g$, draw $\xi^{g,m}_t$ from its posterior distribution conditional on $\sigma^m_\xi$, $\theta^{m-1}_d$, $\theta^{m-1}_s$, $\{\xi^{g,m}_t\}_{k=1}^{t-1}$, and $\{\xi^{g,m}_k\}_{k=t+1}^{T_g}$. We will draw $\xi^{g,m}_{1t}$, $\xi^{g,m}_{2t}$, and $\xi^{g,m}_{st}$ separately. Below, we will describe how to draw $\xi^{g,m}_{1t}$, but the procedure can be applied for drawing $\xi^{g,m}_{2t}$ and $\xi^{g,m}_{st}$.

   (a) Draw $\xi^{g,m}_{1t}$ (candidate parameter value).

   (b) We compute the pseudo-joint likelihood at $\xi^{g,m}_{1t}$ conditional on $\{\xi^{g,m}_k\}_{k=1}^{t-1}$, $\xi^{g,m-1}_{2t}$, $\xi^{g,m-1}_{st}$, $\{\xi^{g,m-1}_k\}_{k=t+1}^{T_g}$, $\theta^m_d$ and $\theta^m_s$. Note that conditional on $\sigma^m_\xi$, the pseudo-joint likelihood prior to time $t$ does not depend on $\xi^{g,m}_{1t}$. Thus, we only need to compute the pseudo-joint likelihood at time $t$ and later. To compute the pseudo-joint likelihood, we need to obtain the pseudo-alternative specific value functions for both purchasing and selling decisions at time $t$ and later: $\tilde{V}^m_j(\cdot, t; \theta^m_d)$ and $\{\tilde{W}^m_j(\cdot, t, \tau; \theta^m_d)\}_{\tau=1}^{t-1}$. To obtain $\tilde{V}^m_j(\cdot, t; \theta^m_d)$, we need to calculate both $\tilde{E}^m V(\cdot, t + 1; \theta^m_d)$ (pseudo-expected future value when consumers choose no option) and $\tilde{E}^m W(\cdot, t + 1, 1; \theta^m_d)$ (pseudo-expected future value when
consumers choose to buy new or used game), which are computed as the weighted average of past-pseudo value functions evaluated at time $t + 1$:

i. For $\hat{E}^m V(\cdot, t+1; \theta_d^{m-1})$, we take the weighted average of $\{\tilde{V}^l(p_1, \tilde{p}^l_{2t+1}, \tilde{r}^l_{t+1}, \tilde{Y}^l_{t+1}, \tilde{\xi}^l_{t+1}, \tilde{d}^l_{t+1}; l + 1; \theta_d^l)\}_{l=m-N}^{m-1}$ as in Equation 6.

ii. For $\hat{E}^m W(\cdot, t + 1, 1; \theta_d^{m-1})$, we take the weighted average of $\{\tilde{W}^l(r^l_{t+1}, \tilde{Y}^l_{t+1}, \tilde{\xi}^l_{t+1}, t + 1, 1; \theta_d^l)\}_{l=m-N}^{m-1}$ as in Equation 5. Note that since potential buyers at time $t$ will have owned the game for one period when they reach $t + 1$, the set of past pseudo-value functions used here only include those evaluated at $\tau = 1$.

To obtain $\{\tilde{W}_k^m(\cdot, t, \tau; \theta_d^m)\}_{\tau=1}^{t-1}$, we need to calculate $\{\hat{E}^m W(\cdot, t + 1, \tau + 1; \theta_d^{m-1})\}_{\tau=1}^{t-1}$ by the weighted average of the past pseudo-value functions $\{\tilde{W}^l(r^l_{t+1}, \tilde{Y}^l_{t+1}, \tilde{\xi}^l_{t+1}, t + 1, \tau + 1; \theta_d^l)\}_{l=m-N}^{m-1}$ as in Equation 5.$^{22}$

(c) Similarly, we compute the pseudo-joint likelihood at $\xi_{1t}^{g,m-1}$ conditional on $\{\xi_k^{g,m} \}_{k=1}^{T_y}$, $\xi_{2t}^{g,m-1}$, $\xi_{st}^{g,m-1}$, $\{\xi_k^{g,m-1} \}_{k=t+1}^{T_y}$, $\theta_d^{m-1}$ and $\theta_s^{m-1}$. $^{23}$

(d) Based on the pseudo-joint likelihoods at $\xi_{1t}^{g,m}$ and $\xi_{2t}^{g,m-1}$, we compute the acceptance probability for $\xi_{1t}^{g,m}$ and decide whether to accept (i.e., set $\xi_{1t}^{g,m} = \xi_{1t}^{g,s,m}$) or reject (i.e., set $\xi_{1t}^{g,m} = \xi_{1t}^{g,m-1}$).

(e) Using a similar procedure, draw $\xi_{2t}^{g,m}$ and $\xi_{st}^{g,m}$. One difference in drawing $\xi_{2t}^{g,m}$ is that conditional on $\sigma^m_{\xi}$, $\xi_{st}^{g,s,m}$ does not influence the likelihood function for purchasing decisions.

4. Use the Metropolis-Hastings algorithm to draw $\theta_d^m$ conditional on $\{\xi_t^m\}$ and $\theta_s^{m-1}$.

(a) Draw $\theta_d^{s,m}$ (candidate parameter vector).

---

$^{22}$Conditional on $\sigma^m_{\xi}$, pseudo alternative-specific value functions do not depend on $\xi_{1t}^{g,s,m}$. This is also true for $\xi_{2t}^{g,s,m}$ and $\xi_{st}^{g,s,m}$. Thus, pseudo alternative-specific value functions can be pre-computed right after step 2.

$^{23}$In a standard Metropolis-Hastings algorithm, this step is not necessary as this value has been computed in the previous iteration. However, the IJC algorithm updates the set of past pseudo-value functions in each iteration. Thus, the pseudo-likelihood at $\xi_{1t}^{g,m-1}$ in iteration $m - 1$ will be different from that at $\xi_{1t}^{g,m-1}$ in iteration $m$. 

47
(b) We compute the pseudo-joint likelihood at $\theta_d^{m}$ conditional on $\{\xi^m_t\}$ and $\theta_s^{m-1}$ based on the pseudo-alternative specific value functions for both purchasing and selling decisions at $\theta_d^{m}$: $\tilde{V}_j^m(\cdot, t; \theta_d^{m})$ and $\{\tilde{W}_k^m(\cdot, t, \tau; \theta_d^{m})\}_{\tau=1}^{t-1}$ for all observed $t$ and $g$. To obtain $\tilde{V}_j^m(\cdot, t; \theta_d^{m})$, we need to calculate both $\hat{E}_m V(\cdot, t; \theta_d^{m})$ and $\hat{E}_m W(\cdot, t, 1; \theta_s^{m})$, which are computed as the weighted average of past-pseudo value functions evaluated at time $t + 1$:

i. For $\hat{E}_m V(\cdot, t; \theta_d^{m})$, we take the weighted average of $\{\tilde{V}_l^i(p_1, \tilde{p}_{2t+1}^l, \tilde{r}_{t+1}^l, \tilde{c}_{t+1}^d, \tilde{s}_d, t+1; \theta_d^{m})\}_{l=m-N}^{m-1}$ as in Equation 6.

ii. For $\hat{E}_m W(\cdot, t, 1; \theta_d^{m})$, we take the weighted average of $\{\tilde{W}_l^i(\tilde{r}_{t+1}^l, \tilde{Y}_{t+1}^l, \tilde{s}_s, t+1, 1; \theta_d^{m})\}_{l=m-N}^{m-1}$ as in Equation 5. Again, note that since potential buyers at time $t$ will have owned the game for one period when they reach $t + 1$, the set of past pseudo-value functions used here are all evaluated at $\tau = 1$.

To obtain $\{\tilde{W}_k^m(\cdot, t, \tau; \theta_d^{m})\}_{\tau=1}^{t-1}$, we only need to calculate $\{\hat{E}_m W(\cdot, t + 1, \tau + 1; \theta_d^{m})\}_{\tau=1}^{t-1}$ by the weighted average of the past pseudo-value functions $\{\tilde{W}_l^i(\tilde{r}_{t+1}^l, \tilde{Y}_{t+1}^l, \tilde{s}_s, t + 1, \tau + 1; \theta_d^{m})\}_{l=m-N}^{m-1}$ as in Equation 5.

(c) Similarly, we compute the pseudo-joint likelihood at $\theta_d^{m-1}$ conditional on $\{\xi^m_t\}$ and $\theta_s^{m-1}$.

(d) Based on the pseudo-joint likelihoods at $\theta_d^{m}$ and $\theta_d^{m-1}$, we compute the acceptance probability for $\theta_d^{m}$ and decide whether to accept (i.e., set $\theta_d^{m} = \theta_d^{m}$) or reject (i.e., set $\theta_d^{m} = \theta_d^{m-1}$).

5. Use the Metropolis-Hastings algorithm to draw $\theta_s^{m}$ conditional on $\{\xi^m_t\}$ and $\theta_d^{m}$.

(a) Draw $\theta_s^{m}$ (candidate parameter vector).

(b) We compute the pseudo-likelihood for pseudo-policy functions at $\theta_s^{m}$ conditional on $\{\xi^m_t\}$ and $\theta_d^{m}$. Note that the pseudo-alternative specific value functions do not depend on $\theta_s^{m}$,
but are required to compute the pseudo-likelihood at $\theta_{s}^{m}$ since they influence the evolution of equilibrium state variables. However, they have already been computed in step 4(b) (if $\theta_{d}^{m}$ has been accepted) or 4(c) (if $\theta_{d}^{m}$ has been rejected), there is no need to re-compute them here to form the pseudo-likelihood for pseudo-policy functions.

(c) To form the acceptance probability of $\theta_{s}^{m}$, we need the pseudo-likelihood for pseudo-policy functions at $\theta_{s}^{m-1}$ conditional on $\{\xi_{t}\}$ and $\theta_{d}^{m}$. Note that this value has been computed in step 4 and needs not be re-computed here.

(d) Based on the pseudo-likelihood for pseudo-policy functions at $\theta_{s}^{m}$ and $\theta_{s}^{m-1}$, we compute the acceptance probability for $\theta_{s}^{m}$ and decide whether to accept (i.e., set $\theta_{s}^{m} = \theta_{s}^{m}$) or reject (i.e., set $\theta_{s}^{m} = \theta_{s}^{m-1}$).

6. Compute the pseudo-value functions for purchasing and selling decision problems.

(a) For each $t = 2, \ldots, T$, make a draw of used-game price ($\tilde{p}_{2t}^{m}$), resale value ($\tilde{r}_{T}^{m}$), inventory level ($\tilde{Y}_{t}^{m}$), and cumulative number of newly introduced games ($\tilde{C}_{t}^{m}$) from uniform distributions with appropriate upper- and lower-bound (e.g., upper- and lower-bound of observed values).

(b) Make a draw of $\tilde{\xi}_{s1}^{m}$, $\tilde{\xi}_{s2}^{m}$, and $\tilde{\xi}_{ss}^{m}$ from the corresponding distribution based on $\sigma_{\xi_{1}}^{m}$, $\sigma_{\xi_{2}}^{m}$, and $\sigma_{\xi_{s}}^{m}$.

(c) Start from the terminal period $T$.

   i. Compute the value functions $\tilde{V}^{m}(p_{1}, \tilde{p}_{2T}^{m}, \tilde{r}_{T}^{m}, \tilde{Y}_{T}^{m}, \tilde{C}_{T}, \tilde{\xi}_{s}^{m}, T; \theta_{d}^{m})$ and $\{\tilde{W}^{m}(\tilde{r}_{T}^{m}, \tilde{Y}_{T}^{m}, \tilde{\xi}_{s}^{m}, T; \tau_{d}^{m})\}_{\tau=1}^{T-1}$. Note that at time $T$, there is no need to compute the pseudo-expected future value. Thus, the value functions computed at time $T$ are not pseudo-value functions.
ii. Store \( \tilde{V}_m(\cdot, T; \theta^{sm}_d) \) and \{\( \tilde{W}_m(\cdot, T, \tau; \theta^{sm}_d) \)\}_{\tau=1}^{T-1}.

(d) For \( t = T-1, \ldots, 2 \), compute the pseudo-value function \( \tilde{V}_m(p_1, \tilde{p}_2^m, \tilde{r}_1^m, \tilde{Y}_t^m, \tilde{C}_t^m, \tilde{\varepsilon}_d^m, t; \theta^{sm}_d) \) and \{\( \tilde{W}_m(\tilde{r}_1^m, \tilde{Y}_t^m, \tilde{\varepsilon}_d^m, t, \tau; \theta^{sm}_d) \)\}_{\tau=1}^{t-1} \) for all \( i \) backwards.

i. To compute \( \tilde{V}_m(\cdot, t; \theta^{sm}_d) \), we need to calculate \( \hat{E}_m V(\cdot, t+1; \theta^{sm}_d) \) and \( \hat{E}_m W(\cdot, t+1, 1; \theta^{sm}_d) \) based on Equations 6 and 5, respectively.

ii. To compute \{\( \tilde{W}_m(\cdot, t, \tau; \theta^{sm}_d) \)\}_{\tau=1}^{t-1} \), we need to calculate \{\( \hat{E}_m W(\cdot, t+1, \tau+1; \theta^{sm}_d) \)\}_{\tau=1}^{t-1} \) based on Equation 5.

iii. Store \( \tilde{V}_m(\cdot, t; \theta^{sm}_d) \) and \{\( \tilde{W}_m(\cdot, t, \tau; \theta^{sm}_d) \)\}_{\tau=1}^{t-1} \).

7. Go to iteration \( m + 1 \).

A.2 The likelihood function

Assuming that the prediction errors, \( \nu^p_t \) and \( \nu^r_t \), in Equations 3 and 4 are normally distributed, we obtain the conditional likelihood of observing \((p^2_{2t}, r^2_t)\),

\[
 f_s(p^2_{2t}, r^2_t | \{M^d_1^g, v^g(t, 0), \{M^{s, g}_t(\tau), v^g(t, \tau)\}_{\tau=1}^{t-1}\}_{i=1}^{I}, \{\xi^g_{1t}, \xi^g_{2t}, \xi^g_{st}, Y^g_t, \theta_s\})
\]

where \( \theta_s \) is the parameter vector of pseudo-policy functions. Note that (i) \( v^g(t, \tau) \) depends on product characteristics, \( X_g \); (ii) \( M^{d, g}_t \) (size of potential buyers) and \( M^{s, g}_t(\tau) \) (size of owners) are a function of \( X_g, p_1^g, \{p^g_{2m}, r^g_m, Y^g_m\}_{m=2}^{t-1}, \{C^g_m\}_{m=1}^{t-1}, \{\xi^g_{1m}\}_{m=1}^{t-1}, \{\xi^g_{2m}, \xi^g_{sm}\}_{m=2}^{t-1}, M^d_1^g \) (initial size of potential buyers), and \( \{N^g_m\}_{m=2}^t \) (potential buyers who entered at time \( m \)). Thus, we can rewrite \( f_s \) as

\[
 f_s(p^2_{2t}, r^2_t | \{\xi^g_{1m}\}_{m=1}^{t}, \{\xi^g_{2m}, \xi^g_{sm}\}_{m=2}^{t}, Y^g_t, Z^g_t, \theta_s).
\]

where \( Z^g_t = \{X_g, p_1^g, \{p^g_{2m}, r^g_m, Y^g_m\}_{m=2}^{t-1}, \{C^g_m\}_{m=1}^{t-1}, M^d_1^g, \{N^g_m\}_{m=2}^t\} \) is a vector of observed variables.

Assume further that the measurement errors, \( \varepsilon_{1t}, \varepsilon_{2t}, \varepsilon_{st} \), in Equations 1 and 2 are normally distributed. Then, the conditional likelihood of observing \((Q^g_{1t}, Q^g_{2t}, Q^g_{st})\) is written as

\[
 f_d(Q^g_{1t}, Q^g_{2t}, Q^g_{st} | \{M^d_1^g, v^g(t, 0), \{M^{s, g}_t(\tau), v^g(t, \tau)\}_{\tau=1}^{t-1}\}_{i=1}^{I}, \{\xi^g_{1t}, \xi^g_{2t}, \xi^g_{st}, p_1^g, p^2_{2t}, r^2_t, C^g_t, Y^g_t, \theta_d\}).
\]
where $\theta_d$ is the vector of demand-side parameters. Similar to $f_s$, $f_d$ can be rewritten as

$$f_d(Q_{1t}, Q_{2t}, Q_{st}|\{\xi_{1m}\}_{m=1}^t, \{\xi_{2m}, \xi_{sm}\}_{m=2}^t, p_{2t}, r_t, C_t, Y_t, Z_t, \theta_d).$$

The joint likelihood of observing $(Q_{1t}, Q_{2t}, Q_{st}, p_{2t}, r_t)$ is the product of $f_s$ and $f_d$:

$$l(Q_{1t}, Q_{2t}, Q_{st}, p_{2t}, r_t|\{\xi_{1m}\}_{m=1}^t, \{\xi_{2m}, \xi_{sm}\}_{m=2}^t, C_t, Y_t, Z_t, \theta_d, \theta_s) =$$

$$f_d(Q_{1t}, Q_{2t}, Q_{st}, p_{2t}, r_t|\{\xi_{1m}\}_{m=1}^t, \{\xi_{2m}, \xi_{sm}\}_{m=2}^t, C_t, Y_t, Z_t, \theta_d) \times$$

$$f_s(p_{2t}, r_t|\{\xi_{1m}\}_{m=1}^t, \{\xi_{2m}, \xi_{sm}\}_{m=2}^t, C_t, Y_t, Z_t, \theta_s).$$

The likelihood of observing $D = \{\{Q_{1t}\}_{t=1}^{T_g}, \{Q_{2t}, Q_{st}, p_{2t}, r_t\}_{t=2}^{T_g}\}_{g=1}^G$ is

$$L(D|\xi, C, Y, Z; \theta_d, \theta_s) =$$

$$\prod_{g=1}^G \left[ f_d(Q_{1t}^{T_g}|\xi_{11}, C_1, Z_1, \theta_d) \prod_{t=2}^{T_g} l(Q_{1t}, Q_{2t}, Q_{st}, p_{2t}, r_t|\xi_{1m}^t, \xi_{2m}, \xi_{sm}^t, C_t, Y_t, Z_t, \theta_d) \right]$$

where $G$ is the total number of games, $T_g$ is the length of observations for game $g$, $C = \{\{C_t\}_{t=1}^{T_g}\}_{g=1}^G$, $Y = \{\{Y_t\}_{t=1}^{T_g}\}_{g=1}^G$, and $Z = \{\{Z_t\}_{t=1}^{T_g}\}_{g=1}^G$.

Note that $\{\xi_{1t}\}_{t=1}^{T_g}$, $\{\xi_{2t}, \xi_{st}\}_{t=2}^{T_g}$ are unobserved to the econometricians. In the proposed Bayesian framework, these variables are augmented from the corresponding distributions to form the likelihood $L(D|\cdot)$.