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Abstract
Modern structural equation modeling software programs include user inter-
faces for the entry of graphical diagrams as a method for the production
of the underlying matrices that are then manipulated in traditional ways
to provide parameter estimates and fit statistics. This work presents an
algorithm for the solution of the problem in the reverse order: automati-
cally producing a graphical diagram from a matrix formula in such a way
that its components are logically and hierarchically arranged. In the process,
the individual path components of expected covariance between variables are
calculated and feedback loops or so–called nonrecursive paths are recognized
and tagged. Possible uses for this algorithm include automatic recognition of
regions of structural underidentification in a model and the didactic graphi-
cal display of the components of expected covariance between variables. This
algorithm relies on the matrix equations of McArdle and McDonald (1984),
a general purpose SEM formulation.

This work was supported in part by a grant from the National Institute on Aging (1-R29AG14983-
01A1). Splus code that implements a version of the algorithm presented in this article can be downloaded
from http://www.nd.edu/˜ sboker/
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Introduction

A number of structural equation modeling programs now include a graphical user
interface that allows the creation of path diagrams and a means of building model matrices
(Arbuckle, 1997; Bentler, 1995; Jöreskog & Sörbom, 1996; Muthén, 1998; Neale, Boker,
Xie, & Maes, 1999). Although the authors are aware of no formal study, students report
that these graphical user interfaces have reduced the time that it takes for a novice to learn
how to specificy a model of interest. However, many experts continue to specificy models
using model matrices for a variety of reasons including familiarity, control, and the ability to
make minor modifications to existing scripts. An algorithm that automatically translated
existing models specified through matrices into an organized and logical path diagram would
be useful in presenting these model specifications for presentation or publication.

The graphical method of building model matrices requires there there be no ambiguity
in model specification when the path diagram is drawn. That is to say, one diagram must
result in an unambiguous set of model matrices. Of course, there are equivalent matrix
formulations that can be used for specifying the same model specification. As long as
the path diagram to model matrix translation can produce one of the these equivalent
formulations, an appropriate estimation program can fit the model to the data.

Similarly, an automatic translation of a model specification from its matrix form into
a path diagram relies on diagrammatic conventions such that there is no ambiguity in the
resulting path diagram. Thus one model specification must be able to be mapped onto one
structurally unambigous diagram. Thus the variables and the paths connecting the variables
can have only one configuration topologically (Gemignani, 1972). However, one may place
the variables anywhere on the graphical page. Almost all random choices of placement of
variables on the page will produce a visually confusing diagram once the paths are drawn
(see Figure 1).

When a path diagram is drawn well, there is an order to the placement of variables
that facilitates interpretation of the model (see Figure 2). One simple heuristic posits
that variables that are directly connected to each other should be placed near each other.
Another heuristic that is commonly used is that of a hierarchy of variables, for instance
manifest variables (observed variables), first order factors and second order factors. We will
take advantage of these two heuristics to construct an algorithm that can be used to supply
information about where variables should be logically placed on a page.

Graph theory has developed a number of concepts that are useful in thinking ab-
stractly about a path diagram. In graph theory, a path diagram would be called a digraph,
since it is composed of nodes (circles and boxes) and edges (one and two headed arrows),
and since at least some of the edges have a direction (regression weights) (see Christofides,
1975, for an introduction). The span of a graph denotes the number of nodes crossed by
the longest directed path in a digraph. If each edge is of a length greater than or equal to
one, the graph will cover a minimal area when the nodes are placed on a page such that
the length of the edges are minimized. In this case, the length of the span of the graph will
be similar to the greatest geometric distance between any two variables.

One way to organize a path diagram so as to (a) place variables that are closely
connected near each other, and (b) create a hierarchy of variables; is to calculate the number
of nodes crossed by the longest path between every pair of variables and then arrange the
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Figure 1. A confusing path diagram resulting from random placement of variables on the page.
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Figure 2. The same model as Figure 1 but organized more effectively.
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variables on the page in such a way that the geometric distance between variables is as
similar as possible to the length of the longest path. This solution effectively keeps variables
that are directly connected as close as possible to each other while at the same time can be
used to create a hierarchy of variables. One could visualize this solution as picking up the
diagram in Figure 1 by the variable F3, giving it a quick shake, and then laying it carefully
back down onto the page.

The hierarchy of variables generated by the proposed algorithm consists at the lowest
level of variables (Level 0) that have no directed arrows leaving them. At Level 1, there are
variables that have at least one arrow leaving them that terminates in a variable at Level 0,
but no arrow that terminates at higher levels. At Level 2, there are variables that have at
least one arrow leaving them that terminates in a variable at Level 1, no arrows terminating
at higher levels, and possibly some arrows that terminate at Level 0. In this way, the length
of the longest (possibly mediated) path emanating from a variable determines the level at
which it belongs.

In order for this algorithm to be complete, it must take into account non-recursivity,
directed paths that describe feedback loops. First, feedback loops of directed paths must
be recognized. We have taken the approach that all variables in a feedback loop should be
kept on the same level where the level to which the feedback loop is assigned is determined
by the longest path emanating from any variable in the loop.

In order implement this solution, one must calculate the longest path connecting all
pairs of variables in a model. The proposed solution to this problem has two additional
benefits: (1) it can be used to isolate and calculate all of the components of the covariance
between any two variables, and (2) it recognizes and tags feedback loops. The remainder of
the article will discuss the algorithm in detail and demonstrate how components of expected
covariance can be obtained from the linked list that is the product of the algorithm.

Calculating an Expected Covariance Matrix using RAM

One general solution to covariance structural modeling involves constructing three
matrices, a matrix A of asymmetric relations, a matrix S of symmetric relations, and a
filter matrix F that serves to distinguish latent from manifest variables (McDonald, 1978;
McArdle & McDonald, 1984; McArdle & Boker, 1990). The A matrix is of order P × P
where P is the total number of variables and contains all regression weights expressed by
the model such that element aij is the regression weight from variable j to variable i. Each
non–zero element in the A matrix corresponds to a single headed arrow in the corresponding
path diagram.

The matrix S is a symmetric P ×P matrix that contains all variances and covariances
in the model. An element sij represents the covariance between variable i and variable j.
Similarly, an element sii represents the variance of the variable i. For each non-zero element
in the lower triangle of the S matrix there is a double headed arrow in the corresponding
path diagram.

The filter matrix F is a m × p matrix where p is the total number of variables and
m is the number of manifest variables. The matrix F has a 1 in each element fij such that
variable i in the observed covariance matrix corresponds to the the variable j in the model.

The expected covariance matrix Ce due to the model specified by A, S and F can be
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calculated as
Ce = F(I−A)−1S((I−A)−1)′F′ . (1)

In turn, the matrix (I−A)−1 can be represented as a power series (McDonald, 1978)

(I−A)−1 ≈ A + A2 + A3 + · · · . (2)

A non–zero element of A in row i and column j represents a path composed of one single
headed arrow from variable j with variable i. A non–zero element of A2 in row i and column
j contains the sum of all paths composed of the product of two single headed arrows leading
from variable j through one mediating variable and then into variable i. In the same way,
the matrix A3 contains elements that are the sum of paths of length 3 and so on. This
critical relationship linking the product of connected paths with the powers of A provides
the means by which an automatic graph walking algorithm can be formed which restructures
the covariance calculation into only its non–zero components.

By taking advantage of these relationships, we can thus construct a linked list that
decomposes the expected covariance matrix into the individual paths that lead to the com-
ponents of expected covariance between variables and also use this information as a set of
constraints for automatically drawing path diagrams. This linked list of all paths of all
lengths between all variables is also powerful diagnostic and didactic tool for understanding
the structural relations within a structural equation model.

RAM Definition of an Example Model

We will define and step through the algorithm that creates the linked list of paths
by operating on a simple example structural model. The model shown in Figure 3 will be
used as an example. In this RAM style path diagram, every element has a specific meaning
and exactly defines the model. Prior to creating the linked list of paths, we will define the
example model and its diagram in terms of the RAM formulation.

The squares in the diagram represent manifest variables and the circles represent
latent variables. Single headed arrows represent regression coefficients and double headed
arrows represent covariances. The double headed arrows from a variable to itself represent
the covariance between a variable and itself: its variance. In most path diagramming
systems variances that are not residual variances are not drawn. In order to have a one
to one mapping of all elements of the path diagram of a model to elements in the matrix
formulation of the model RAM path diagrams impose the constraint that all non–zero
arrows (single or double–headed) must be drawn.

Note that not all variables are directly connected by arrows. For instance, there is no
single headed or double headed arrow directly between x1 and y1. Thus the arrows that are
shown in a diagram are drawn from a set of all possible arrows between any two variables.
There are six variables in Figure 3, so there are 6 × 6 = 36 possible single headed arrows
and (6 × 7)/2 = 21 double headed arrows that could have been drawn. Any arrow that
is not shown in the diagram still is possible, but if it is not drawn, it is constrained to be
equal to zero. In this way, it is often more important to note what is not shown in a RAM
path diagram than what is shown, since arrows not shown represent constraints.

If the variables in the model shown in Figure 3 are arranged in the ordered set
{x1, x2, y1, y2, y3, L}, the matrices which define this model in terms of the RAM formulation



ALGORITHM FOR THE ORGANIZATION OF PATH DIAGRAMS 6

y2y1 y3

L
1

x1 x2

Vx1 Vx2Cx12

Vy1 Vy2 Vy3

VL

b1 b2

b3 b4 b5

Figure 3. A simple example path model.

can be written as

A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 b3
0 0 0 0 0 b4
0 0 0 0 0 b5
b1 b2 0 0 0 0


, (3)

S =



Vx1 Cx12 0 0 0 0
Cx12 Vx2 0 0 0 0

0 0 Vy1 0 0 0
0 0 0 Vy2 0 0
0 0 0 0 Vy3 0
0 0 0 0 0 VL


, and (4)

F =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (5)

Any possible single headed arrow between the variables in Figure 3 has a place in the
P × P matrix A. For instance the element Ai,j corresponds to the arrow pointing from
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variable j to variable i in the ordered set of P variables. Thus, the regression coefficient
b3 occupies the element A3,6 since b3 corresponds to the arrow pointing from L, the sixth
member in the ordered set, and pointing to y1, the third member in the ordered set. It is
therefore apparent that there is a one to one mapping between the 36 unique combinations
of arrow beginnings and endings and the 36 cells in this matrix. While not all models that
can be so described are sensible, all possible combinations of single headed arrows among P
variables can be represented using this scheme for mapping between single headed arrows
and elements in a P × P matrix A.

Similarly, any possible double headed arrow in Figure 3 can be represented in the
P × P symmetric matrix S. A double headed arrow between members i and j in the
ordered set of P variables can be thought of as pointing from and to both members i and
j. Thus, the double headed arrow between i and j occupies both the element Si,j and
the element Sj,i. Two example elements from the model shown in Figure 3 illustrate this
mapping. There is a two headed arrow between x1 and x2 in the model representing the
covariance Cx12 between x1 and x2. Since x1 and x2 are the first and second elements
respectively in the ordered set of variables, the covariance between x1 and x2 is mapped to
S1,2 and S2,1. Likewise, the double headed arrow V x1 starting and ending at x1 corresponds
to S1,1. Of course, when i = j, there is only one element in S that is mapped to the double
headed arrow since then Si, j = Sj, i. Once again, although not all double headed arrows
in a model are sensible, all possible combinations of double headed arrows between the
variables in a length P ordered set can be mapped into the P × P matrix A.

Finally, the M × P matrix F is used to map the structural expectations of the full
latent variable model given an ordered list of P total variables onto a second (possibly
differently) ordered list of M manifest variables so that the covariance expectations of the
model can be compared with observed covariances. The matrix F consists of exactly M
elements with value of one and all other elements have the value 0. The ones are arranged
so that the rows and columns of the full latent variable model expectations are reordered
to correspond to the order of the rows and columns of the observed covariances.

Although some might argue that this matrix formulation is arbitrary and contains a
large proportion of zero elements, it has several desirable properties to recommend it. The
first property is that this matrix formulation is entirely general. Thus, any single group
linear structural model of covariance relations can be realized within its framework. What
is and is not sensible is left entirely up to the modeler and is not imposed by constraints
of the covariance expectation formula. Second, there is an exact one to one correspondence
between this formulation and a diagrammatic representation. Thus, one may either draw
a diagram or construct the RAM matrices and one has completely and unambiguously
defined the other. Finally, taken together, this mapping between the diagram and the
matrices when viewed in the context of the formula for the expected covariances leads to a
straightforward and exhaustive method for calculating all expected individual components
of expected covariance as well as an unambiguous method for displaying any arbitrary path
diagram in a meaningfully simplified organization.

Tracing the Components of Covariance

When one assesses the simplicity of the path diagram in Figure 3 relative to the
matrices A and S, it is apparent that there are many elements in matrices that are zero,
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but the diagram represents these zero elements by simply not displaying anything. In this
way, the directed graph (path diagram) of the model is an efficient descriptor in that it only
represents elements that are non–zero. The algorithm presented here originally began as
a method for quickly computing the inverse of the sparse matrix (I −A) using a directed
graph representation. In the process of programming this calculation, it became apparent
that one of the intermediary steps (an expanded linked list of paths) was useful in several
ways other than that for which it was originally intended.

An expanded linked list of paths for a model is a data structure that allows one
to quickly look up all of the connections from any one variable in a model to any other
variable in a model. One particular type of connection is important when calculating the
structural expectations of a model: a component of covariance between the two variables.
Every component of covariance between two variables x and y follows the RAM tracing
rule which consists of three parts, connected serially: (a) a path consisting of zero or more
single headed arrows connected end to end and all pointing to the variable x, (b) a path
consisting of zero or more single headed arrows connected end to end and all pointing to
the variable y, (c) exactly one double headed arrow one end of which points to the base of
path a and the other end of which points to the base of path b. For convenience, we have
named such a component of covariance a bridge, a term from graph theory that describes
such a connection between variables (variables are equivalent to nodes in graph theory). An
example of this type of connection between x and y is shown in Figure 4.

X Y

Z

b1 b2

Vz

Figure 4. The component of covariance between x and y includes the path from z to x, the variance
of z and the path from z to y. Thus the expected covariance between x and y is C(xy) = b1Vzb2.

In our example model, finding the components of expected covariance between vari-
ables becomes more difficult. For instance, consider the components of expected covariance
between y1 and y2. There are five additive components to this covariance, each of which
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follows the tracing rule defined above. These components are then summed to find the total
covariance between y1 and y2 as illustrated in Figure 5. Finding the components by hand
using the RAM tracing rule can be difficult and it is not always clear when one should stop
looking for one more component. The expanded linked list of bridges provides an exhaus-
tive list of all of the components of expected covariance between every pair of variables in
a model.

The linked list of all components of expected covariance (bridges) is constructed in
the following four steps:

1. Create a linked list of all single headed arrows in the model;
2. Expand the linked list to all paths consisting of one or more single headed arrows;

and
3. Create a list of all double headed arrows in the model;
4. Combine the expanded linked list of paths with the list of double headed arrows

to create the linked list of all bridges.

Creating and Expanding a Linked List of Paths

The first step in creating a linked list of all paths is to create a list of single headed
arrows in the model. Given the model specified by the matrix A, this is easily accomplished
by simply listing the row, column and value (or symbol) associated with each non–zero
element in A. In order to later expand this list to include multi–arrow paths, several other
columns will be created as shown in Table 1.

Table 1: A linked list of all single headed arrows of length 1 built from the A matrix for the example
model from Equation 3.

From To Start From
Index Variable Variable Index Index Length Value
1 1 6 1 1 1 b1
2 2 6 2 2 1 b2
3 6 3 3 3 1 b3
4 6 4 4 4 1 b4
5 6 5 5 5 1 b5

Each row in Table 1 has a unique integer assigned in the column labeled “Index”.
The columns labeled “From Variable” and “To Variable” are the row and column numbers
respectively from the A matrix for the example model from Equation 3. The column labeled
“Start Index” and “From Index” are for paths of length one simply the Index number from
the current row. The column labeled “Length” holds the length of the current path and
the column labeled “Value” holds the coefficient (symbolic or numeric) of the path, in this
case taken from the A matrix.

The next step is to expand the linked list of all single headed arrows to include all
paths of length two. A path of length two must have included a variable which had a single
headed arrow pointing to it as well as a single headed arrow pointing from it. Thus, we
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A.

D.C.

B.

Figure 5. Components of covariance between y1 and y2 in the example model. There are five
unique components of expected covariance which are summed to find the covariance between y1 and
y2 C(y1, y2) = b3VLb4 + b3b1Vx1b1b4 + b3b2Vx2b2b4 + b3b1Cx12b2b4 + b3b2Cx12b1b4. Note that the
components shown in the diagrams A, B, C are represented once, but the component in the diagram D
can be constructed in two orders so it is represented twice.
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can find an exhaustive list of paths of length two by performing the following steps for each
path of length one.

1. Find the variable to which the selected path points.
2. Find all paths of length one which point from that variable.
3. For each combination of paths to and from the that variable, build an entry in the

expanded list by extracting information from the list of paths of length one.
These steps are easily accomplished using the list of single headed arrows that has

already been constructed. For instance, examine the path in Index position 1 from Table 1.
This path is of Length 1, and its To Variable is 6. Thus for each time we find 6 in the From
Variable column of paths of length 1 we construct a new entry in the table.

The first result of this process is shown in Index row 6 of Table 2. Index row 3 had a
path of length 1 which has a From Variable value of 6 and To Variable value of 3. Thus in
Index 6 we enter 1 into the From Variable and 3 into the To Variable, denoting that we are
enumerating a path of length 2 that starts at variable 1 and ends at variable 3. The Start
Index is set to 1, the Index value of the variable that starts this path. This information is
kept since a single variable may have many arrows pointing from it, and thus just keeping
the From Variable information is not enough to uniquely define the origin of the path. Next
we enter 3 into the From Index column. This is the Index of the row where we just made the
connection between the two paths of length 1. By saving this information, it is possible to
walk back up a path, following where it came from step by step. This information turns out
to be useful for automatic graphical placement, and may also prove to be useful in finding
areas of local underidentification in a model. Finally, the value in Index 1 is multiplied
with the value in Index 3 to provide a value for the path. These steps are repeated for each
combination of paths of length 1 for which the To Variable of one of the paths matches the
From Variable for another path.

Table 2: A linked list of all single headed arrows of lengths 1 and 2 built from the A matrix for the
example model from Equation 3.

From To Start From
Index Variable Variable Index Index Length Value
1 1 6 1 1 1 b1
2 2 6 2 2 1 b2
3 6 3 3 3 1 b3
4 6 4 4 4 1 b4
5 6 5 5 5 1 b5
6 1 3 1 3 2 b1b3
7 1 4 1 4 2 b1b4
8 1 5 1 5 2 b1b5
9 2 3 2 3 2 b2b3
10 2 4 2 4 2 b2b4
11 2 5 2 5 2 b2b5

Paths of length three are constructed in a virtually identical manner. All paths of
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length three must include both a path of length two pointing to some variable and a path
of length one pointing from that same variable. Thus, by matching the values in the To
Variable column for all paths of length two against the From Variable column for all paths
of length one we can construct an exhaustive list of paths of length three. Examining the
list in Table 2 reveals that the values 3, 4, and 5 appear in the To Variable column for paths
of length two, but these values do not appear in the From Variable column of any path of
length one. Thus there are no paths of length 3.

Paths of length n + 1 always must include a path of length n pointing to a variable
and a path of length 1 pointing from that same variable. Since we have no paths of length
3, we can thus conclude that there can be no paths of length greater than three and the
algorithm for expanding the list of single headed arrows has terminated. Since we now know
that no paths of length greater than two exist and that paths of length one and of length
two have been found, we can conclude that all paths of single headed arrows in the model
are contained in the list in Table 2.

Termination with nonrecursive models

The type of approach used to identify and enumerate an exhaustive list paths is a
recursive algorithm in that it relies on results from paths of length n to construct paths
of length n + 1 and terminates by reasoning that if paths of length n do not exist, paths
of length n + 1 cannot exist. However, so–called nonrecursive models have feedback loops
in their paths and thus this recursive algorithm will not terminate using the rule proposed
above. Nonrecursive models may be a bit of a misnomer in that they are so named since
they are resistant to solution by recursive methods. However, in other fields, these models
would be deemed to be infinitely recursive, since the reason they are resistant to solution
by recursive algorithms is that the recursive algorithm does not terminate and continues to
recurse indefinitely.

A rule can be added to the above algorithm which will always identify feedback loops
of any length and terminate expansion of those feedback loops after a single circuit around
the loop. Consider the path model shown in Figure 6. If we expand the list of paths for
this model up to paths of length 3, it becomes immediately apparent what the rule should
be.

First, we assign an ordering of the variables such that X = 1, Y = 2, Z = 3. Now
the expanded list can be built and is shown in Table 3. Rows with Index values 7, 8 and 9
are the paths of length 3. Note that each of these rows, the From Variable is equal to the
To Variable. Thus when a path both begins and ends at the same variable it is a feedback
loop. This is a sensible and complete way of identifying all the paths associated with a
feedback loop.

Thus we can construct a rule which will terminate in the presence of feedback loops
of single headed arrows. Whenever a path of length n has a From Variable and To Variable
that are equal, do not include that path in construction of paths of length n + 1. There
remains a problem of the calculation of the value of any path that includes any portion of
a feedback loop, since if the value of the minimum length path around a feedback loop is b,
the value of all paths implicit in the the feedback loop is the power series

b+ b2 + b3 + . . . (6)
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Figure 6. A “nonrecursive” path model.

Table 3: A linked list of all single headed arrows of lengths 1 and 2 built from the example model from
Figure 6.

From To Start From
Index Variable Variable Index Index Length Value
1 1 2 1 1 1 b1
2 2 3 2 2 1 b2
3 3 1 3 3 1 b3
4 1 3 1 2 2 b1b2
5 2 1 2 3 2 b2b3
6 3 2 3 1 2 b3b1
7 1 1 1 4 3 b1b2b3
8 2 2 2 5 3 b2b3b1
9 3 3 3 6 3 b3b1b2
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for which there may or may not be a limit depending on the value of b.
More complicated nonrecursive models might include figure eight feedback loops. The

stopping rule proposed above will correctly locate all of the unique combinations of smaller
feedback loops that compose the interlocking feedback loops. Two loops with the same
From Variable and To Variable endpoints will form an figure eight style of loop and the
power series of these two loops will thus become combined.

Creating a List of Components of Covariance

Once we have created the expanded list of paths we can begin to build a list of
components of expected covariance. Since every component of covariance includes exactly
one double headed arrow, we first create a list of double headed arrows from the S matrix.
For each nonzero element in S we create an entry in a list of double headed arrows as shown
for the example model in Table 4. Note that we do not need some of the columns that had
been used in the list of paths because the list of double head arrows only includes elements
of length one. Also note that since the double headed arrows are not directional, the notions
of “From” and “To” are not meaningful. Thus we have labeled the two columns “Variable
A” and “Variable B” which contain the indices of the nonzero elements in the S matrix.

Table 4: A linked list of all double headed arrows built from the S matrix for the example model from
Equation 4.

Index Variable A Variable B Value
1 1 1 Vx1

2 2 2 Vx2

3 3 3 Vy1

4 4 4 Vy2

5 5 5 Vy3

6 6 6 VL
7 2 1 Cx12

8 1 2 Cx12

Now, we are prepared to create a list of components of expected covariance for all
pairs of variables in the model. Each component of covariance is a bridge, and must include
exactly one double headed arrow and zero or one path starting from each end of the double
headed arrow. Thus there are three configurations of bridges: (1) a double headed arrow
alone, (2) a double headed arrow with a path from one of its ends, and (3) a double headed
arrow with paths from both of its ends.

These three configurations of bridges can be built using the list of double headed
arrows and the expanded list of paths. The following procedure will find all bridges.

1. List all of the double headed arrows.
2. List all pairs of one double headed arrow and one path such that either the “Vari-

able A” or “Variable B” column for the double headed arrow matches the “From Variable”
column in the expanded list of paths.
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3. List all triplets consisting of one double headed arrow and two (not necessarily
unique) paths such that the “Variable A” column for the double headed arrow matches the
“From Variable” column for the first path “Variable B” column for the double headed arrow
matches the “From Variable” column for the second path.

To help see how this works, a list of bridges that include the double headed arrow from
X1 to X1 for the example model from Figure 3 has been calculated and listed in Table 5.
It is apparent from the length of this list (25 separate components of covariance) that the
number of bridges grows rapidly as the complexity of the model increases. However, a
complete and exhaustive list of bridges can be automatically generated by computer using
this algorithm, and it then becomes an easy matter to look up all of the possible components
of covariance between any two selected variables. An Splus version of functions to produce
a full list of bridges is provided on the web site http://www.nd.edu/˜ sboker. Using this
software, the example model can be determined to have 119 bridges in all.

Table 5: A list of all bridges that include the double headed arrow from X1 to X1 in Figure 3.

Span Path 1 Path 2
Index Variable A Variable B Index Index Index Value
1 1 1 1 0 0 Vx1

2 1 6 1 1 0 Vx1b1
3 1 3 1 6 0 Vx1b1b3
4 1 4 1 7 0 Vx1b1b4
5 1 5 1 8 0 Vx1b1b5
6 6 1 1 0 1 Vx1b1
7 3 1 1 0 6 Vx1b1b3
8 4 1 1 0 7 Vx1b1b4
9 5 1 1 0 8 Vx1b1b5
10 6 6 1 1 1 b1Vx1b1
11 6 3 1 1 6 b1Vx1b1b3
12 6 4 1 1 7 b1Vx1b1b4
13 6 5 1 1 8 b1Vx1b1b5
14 3 6 1 6 1 b3b1Vx1b1
15 3 3 1 6 6 b3b1Vx1b1b3
16 3 4 1 6 7 b3b1Vx1b1b4
17 3 5 1 6 8 b3b1Vx1b1b5
18 4 6 1 7 1 b4b1Vx1b1
19 4 3 1 7 6 b4b1Vx1b1b3
20 4 4 1 7 7 b4b1Vx1b1b4
21 4 5 1 7 8 b4b1Vx1b1b5
22 5 6 1 8 1 b5b1Vx1b1
23 5 3 1 8 6 b5b1Vx1b1b3
24 5 4 1 8 7 b5b1Vx1b1b4
25 5 5 1 8 8 b5b1Vx1b1b5



ALGORITHM FOR THE ORGANIZATION OF PATH DIAGRAMS 16

Using the Expanded Path List to Organize Graphics

If one compares Figures 1 and 2, it is immediately apparent that one diagram is
more understandable than the other. However, both diagrams are equivalent with respect
to their matrix formulation, and thus have the same expected covariance matrix. Clearly,
the difference between these two diagrams does not lie in the algebra. Another way to say
this is that the difference does not lie in the topology of these two diagrams, it lies in their
geometry. The geometric placement of the variables on the page rather than the topologic
nature of the connections between the variables is the reason these two diagrams differ.

Thus, arrangement of the variables on the page is a problem in sorting the variables.
The relative distance between a chosen variable and all of the other variables in the diagram
define where that variable is within the diagram. The expanded list of paths provides a
way to sort variables so that they are in an ordering such that the distances between the
variables correspond to geometric configurations of path diagrams as they are commonly
presented. Consider Figure 7, where each variable is categorized according to the length of
the longest path beginning at that variable.

y2y1 y3

L
1

x1 x2

Vx1 Vx2Cx12

Vy1 Vy2 Vy3

VL

b1 b2

b3 b4 b5

2

1

0

Figure 7. The example path model with variables categorized according to the length of the longest
path beginning at each variable.

This categorization of variables into levels based on the length of the longest path
which starts at that variable results in an automatic reduction in the apparent complexity
of a path diagram. Just applying that one rule will reorganize Figure 1 into Figure 2.
Similarly, by sorting the variables within a level so that the paths into those variables are in
the same order as the order of the variables in the level above will change the path diagram
of the confirmatory factor model shown in Figure 8–a into the path diagram in Figure 8–b.

Note that the variable Y2 is predicted by both L1 and L2. Variables that have more
than one predictor from the level above can be sorted to occur at the appropriate boundary
between variables with only one predictor. However, when there are more than two variables
on the level above, a variable may have two predictors that are not contiguous at the upper
level. In this case, the upper level should be sorted so that variables with two predictors
can occur at the boundary between the variables with one predictor. An organization which
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0
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y1y2 y3
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Vy2 Vy1 Vy3

VL2

b3 b1 b4
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Vy4 Vy5

VL1

b5 b6 b2
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1

y4y3 y5

L2

Vy3 Vy4 Vy5

VL2

b4

b5 b6

y2y1

L1

Vy5 Vy2

VL1

b1

b2

b3

CL12a.

Figure 8. A confirmatory factor model with variables unsorted and sorted within levels. (a) The variables
in level 0 are sorted by the order they appear in the A matrix. (b) The variables in level 0 are sorted by
their inputs from the level above.

satisfies these constraints will not always be possible. For instance in Figure 9 there is one
variable in level 0 that is predicted by L1 and L2, one that is predicted by L2 and L3, and
one that is predicted by L3 and L1. All arrangements of the factors will still produce a path
diagram in which the single headed arrows cross.

0

1

y6y5 y7

L3

Vy5 Vy6 Vy7

VL3

b8 b9
b10

y4y3

L2

Vy3 Vy4

VL2

b5 b6
b7

CL23

y2

Vy2

y1

Vy1

L1 VL1

CL12

CL13

b4
b3

b2b1

Figure 9. A confirmatory factor model with indicators that cannot completely satisfy the level sorting
constraints.

Finally, path models that contain feedback loop paths need to be addressed. We
recommend placing feedback loops as a unit within the level defined by the length of the
longest path beginning at a variable in the feedback loop and containing no other variables
from within the feedback loop. Thus, the nonrecursive portion of a model can be drawn
so that, as much as possible, the elements of a feedback loop are nearest neighbors to each
other. This is sensible when one considers that the value of a feedback loop is a power series
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of the linear combination of the elements contained within the feedback loop.

Examining Local Structure

Although we have just spent a good deal of time discussing what might only appear
to be aesthetics of diagrams, the automatic geometric layout of a path diagram can be
informative about the form of simple structure that is implied by a theory. As structural
modelers, we are concerned with constructing models that attain a good fit to data relative
to their simplicity. Most goodness of fit measures are, in one way or another, concerned
with this question. But simplicity can be attained in many ways. Most measures of model
simplicity are only concerned with an overall count of parameters and statistics.

However, it is often the case that simplicity in a model varies across the model; in
other words some of the variables can contribute more to the misfit of the model than
others. In some cases, a portion of a model may be exactly identified, or underidentified
even though it appears that there are enough degrees of freedom overall. One may use
the automatically generated sorting of the path model to examine the local structure of a
model. Here, the notion of locality is refined by the sorting that has occurred in order to
define geometric distance between variables so that an organized path diagram could be
drawn.

In order for a latent variable to be scaled, at least one path leading from it or its
variance must be fixed. This is the commonly used criterion for making sure that a latent
variable is identified. However, many times modelers will ignore the fact that a latent
variable must have three indicators before that latent construct is structurally identified. In
fact, a latent variable with only three indicators is locally exactly identified, that is, there is
no opportunity for that local neighborhood to contribute to the misfit of the model. A latent
construct needs at least four indicators before this portion of the model is overidentified.

Neighborhood categories can be defined by organizing the expanded list of paths into
groups of paths that all share the same origin. Each of these neighborhoods can then be
assessed for sufficiency of identification. Neighborhoods may or may not overlap, and one
may wish to analyze highly overlapping neighborhoods as if they were one neighborhood.

Discussion

Structural equation models can and are frequently represented as path diagrams. We
have explored one method for using the one–to–one relationship between RAM path dia-
grams and their structural expectations to examine the additive components that define the
structural expectations inherent in a model, what we have called bridges. These components
of covariance expectation are in turn composed of paths and spans. By examining paths,
we can automatically generate path diagrams from their algebraic descriptions using a rule
that categorizes a variable based on the longest path beginning at the chosen variable. This
rule produces path diagrams that are similar to path diagrams that are commonly drawn.

The methods presented here are especially interesting in that they provide a logical
way to evaluate the structural sensibility of models. Models that have simple structure are
generally preferred over models with more complex structure (Ressler, 1963; Thurstone,
1938, 1947). The methods presented here could be used to provide objective criteria for
evaluating what is meant by “simple structure”.
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We have presented an overview of how the expanded lists of paths and spans can
be used to define locality and neighborhoods in a model in such a way that issues of local
identification can be addressed. In all, these methods for analyzing a structural equation
model provide detailed and useful information that is otherwise not available.

Finally, we hope that these tools can be used to gain more complete understanding of
the implications of the addition or deletion of particular paths in a model. Does the addition
or deletion of a path mean that a variable has changed levels in the hierarchy of variables?
If so, a structural change has been made that involves a greater difference in complexity
than one that does not force such a change in levels. Does the addition or deletion of a
path force the resorting of variables within a level? If so, a change has been made that
influences the degree of overlap of neighborhoods and so has changed the complexity of a
model to a greater degree than the addition or deletion of a path which does not force such
a reorganization.

Conclusion

The specification of a structural model in RAM terms is general and complete. How-
ever, other more restrictive algebraic formulations are often used since the models so speci-
ficied are more likely to be sensible given their framework of analysis. However, restricting
oneself to what is sensible today often imposes unnecessary restrictions on new methods
tomorrow. We have discussed a set of methods which allow one to evaluate the structural
sensibility of a model without placing hard structural constraints within the formulation of
the expectation algebra. In this way, we hope to encourage more flexible thinking about
the way that structural equation models may be specified and interpreted.
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