Detection of ozone on Saturn’s satellites Rhea and Dione

K. S. Noll†, T. L. Roush‡, D. P. Cruikshank†, R. E. Johnson* & Y. J. Pendleton†

* Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA
† NASA Ames Research Center, Moffett Field, California 94035, USA
‡ Department of Geosciences, San Francisco State University, San Francisco, California 94132, USA
§ University of Virginia, Engineering Physics, Charlottesville, Virginia 22901, USA

The satellites Rhea and Dione orbit within the magnetosphere of Saturn, where they are exposed to particle irradiation from trapped ions. A similar situation applies to the galilean moons Europa, Ganymede and Callisto, which reside within Jupiter’s radiation belts. All of these satellites have surfaces rich in water ice2. Laboratory studies of the interaction of charged-particle radiation with water ice predicted the tenuous oxygen atmosphere recently found on Europa4 and Ganymede5. However, theoretical investigations did not anticipate the trapping of significantly larger quantities of O2 within the surface ice5. The accumulation of detectable abundances of O2, produced by the action of ultraviolet or charged-particle radiation on O3, was also not predicted before being observed on Ganymede5. Here we report the identification of O3 in spectra of the saturnian satellites Rhea and Dione. The presence of trapped O3 is thus no longer unique to Ganymede, suggesting that special circumstances may not be required for its production.

The observations of Rhea, Dione and Iapetus reported here (Fig. 1) were obtained with the Hubble Space Telescope’s Faint Object Spectrograph (Table 1). The data were reduced using the standard procedures maintained by the Space Telescope Science Institute. Geometric albedos were calculated by dividing out the solar spectrum8 and by correcting to zero degrees phase angle9,10.

Table 1 HST observations of Saturn’s satellites

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Date (UT)</th>
<th>λ (nm)</th>
<th>θ (deg)</th>
<th>α (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dione (T)</td>
<td>21 Dec. 96</td>
<td>220–480</td>
<td>264</td>
<td>5.9</td>
</tr>
<tr>
<td>(L) 28 Nov. 96</td>
<td>220–480</td>
<td>89</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Rhea (T)</td>
<td>23 Oct. 94</td>
<td>190–330</td>
<td>288</td>
<td>4.7</td>
</tr>
<tr>
<td>(L) 27 Nov. 96</td>
<td>220–480</td>
<td>95</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Iapetus (T)</td>
<td>22 Oct. 94</td>
<td>190–330</td>
<td>269</td>
<td>4.7</td>
</tr>
<tr>
<td>(L) 03 Jan. 96</td>
<td>190–330</td>
<td>91</td>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

λ, wavelength; θ, orbital longitude; α, phase angle; T, trailing hemisphere; L, leading hemisphere.

Of the products that can be produced in H2O ice1,2. Laboratory studies of the interaction of charged-particle radiation with water ice predicted the tenuous oxygen atmosphere recently found on Europa4 and Ganymede5. However, theoretical investigations did not anticipate the trapping of significantly larger quantities of O2 within the surface ice5. The accumulation of detectable abundances of O2, produced by the action of ultraviolet or charged-particle radiation on O3, was also not predicted before being observed on Ganymede5. Here we report the identification of O3 in spectra of the saturnian satellites Rhea and Dione. The presence of trapped O3 is thus no longer unique to Ganymede, suggesting that special circumstances may not be required for its production.

The observations of Rhea, Dione and Iapetus reported here (Fig. 1) were obtained with the Hubble Space Telescope’s Faint Object Spectrograph (Table 1). The data were reduced using the standard procedures maintained by the Space Telescope Science Institute. Geometric albedos were calculated by dividing out the solar spectrum8 and by correcting to zero degrees phase angle9,10.

The spectra of both hemispheres of Rhea and Dione show clear minima at 260 ± 5 nm. The Iapetus spectra have shallow minima at 270 ± 10 nm (trailing hemisphere) and 255 ± 10 nm (leading hemisphere). Of the products that can be produced in H2O ice either by radiolysis or photolysis, only O3 has an absorption feature near 260 nm (refs 11, 12). The wavelength of the albedo minimum is an excellent match to the wavelength of the feature observed on Ganymede’s trailing hemisphere7. The inferred O2/O3 ratio on Ganymede is close to that expected for equilibrium gas trapped in voids or defects in the ice7,13, adding confidence in the identification of the 260-nm absorber as O2. Due to the similar surfaces and charged particle fluxes on Rhea and Dione, we identify the Hartley continuum of O2 with the 260-nm absorption on these satellites. The weakness or absence of the feature on Iapetus is consistent with the lower charged-particle density in the solar wind at Iapetus compared to that found in Saturn’s magnetosphere at the radii of Rhea and Dione’s orbits. Smaller amounts of O2 and O3 are therefore expected in the ice on Iapetus.

To estimate the amount of O3 in the observed spectra of Rhea, Dione and Iapetus we produced a series of models which tested a range of assumptions concerning the continuum. We find the column abundance of ozone to be N(O3) = (1–6) × 1016 cm−2 for Rhea’s leading hemisphere with comparable values for the trailing hemisphere and for both hemispheres of Dione. For Iapetus’s icy trailing hemisphere we find N(O3)< 0.5 × 1016 cm−2 with a poor match to the wavelength of the spectral minimum. Absorption coefficients of ozone were calculated from a gas-phase spectrum which was shifted by +6 nm (ref. 14) and broadened to a full-width at half-maximum intensity of 80 nm (ref. 15). Though these effects are observed in the laboratory, there are no measurements of O3 absorption under conditions similar to those found on the satellites of Saturn and Jupiter, and this remains a continuing source of uncertainty in our estimates of O3 abundances. However, unless the Hartley continuum of O3 is significantly broader at 100 K than it is at 77 K, O3 cannot account for the bulk of the ultraviolet absorption; some other absorber is required. The model shown in Fig. 2 uses a continuum that includes absorption by small amounts of organic residue created by irradiation of water ice and ethane16, and an additional, linear slope at wavelengths less than 477 nm.

We have assumed that the organic residue produced in the laboratory is similar to what might be produced in any icy surface with small quantities of carbon-containing material. The additional slope is needed to match the continued red slope observed at wavelengths <220 nm in the spectrum of Rhea’s trailing hemisphere and may be related to the observation that spectral slopes in this part of the spectrum for residues created by irradiation of ice mixtures are dependent on radiation history17. With this continuum we find N(O3) = 2 × 1016 cm−2. The uncertainties in this estimate are at least a factor of 3.

Ozone is produced in ice by a chain of events starting with the dissociation of H2O by high-energy charged-particle impacts. Oxygen and hydrogen produced in this way recombine, producing some O2 and H2. The H2 subsequently escapes from the satellite because of its high mobility in an ice lattice and its low mass. Oxygen molecules that remain trapped in the ice are exposed to ultraviolet radiation where an equilibrium between O2 and O3 results. If our understanding of the production of O3 is correct, the presence of O3 on these satellites implies that O2 is also present at abundances of the order of 500 times higher than O3 (refs 7, 13). At sufficiently high density and low temperature15, pairs of O2 molecules absorb in a series of weak bands, most easily observed at 580 and 630 nm (ref. 6). The inferred abundance of O2 on Rhea and Dione is approximately half that found on Ganymede which might lead to O2 bands with a maximum absorption of 1% of the continuum. Visible-wavelength spectra of the precision needed to identify these weak O2 bands have not been published for Saturn’s satellites, but could be obtained with current technology. The lack of these features would not rule out O2, but their presence would be strong additional evidence for its presence. Another test would be to search for O2 on the icy satellites Tethys and Enceladus which orbit Saturn at a distance where the density of charged particles is significantly higher than at Rhea or Dione. If the total flux of charged particles is the most important factor in the production of O2, then we expect O2 to be present on both Tethys and Enceladus. The satellites of Uranus are also ice-rich objects18, but experience a much lower charged-particle flux than Rhea and appear to have carbon contaminants which could compete for oxygen. As a results, we expect a lower abundance of O3 on these satellites.

The rotation periods of Rhea, Dione and Iapetus are synchronous with their revolution about Saturn so that one hemisphere (leading) always faces in the direction of orbital motion while the opposite (trailing) faces away. Both charged-particle radiation...
and micrometeorite impacts can have asymmetric effects on the surfaces, with a higher flux of charged particles striking trailing hemispheres and micrometeorite impacts predominating on the leading hemispheres of the satellites. Jupiter’s icy satellites, also in synchronous rotation, show many leading–trailing hemisphere dichoto-

mies, most of which are attributable to irradiation of the trailing hemisphere. Saturn’s satellites Rhea and Dione exhibit leading–trailing hemisphere differences in colour, albedo and ice-

band depth, and experience charged-particle fluxes comparable to Ganymede. Iapetus is marked by an extreme darkening of its leading hemisphere but orbits outside Saturn’s magnetosphere where it encounters the lower-density charged-particle environment of the solar wind. Besides changes in albedo, colour and grain properties, Europa, Ganymede and Callisto each have compositional differences between leading and trailing hemispheres. However, the compositional differences defy a single explanation with excesses of SO2 on Europa’s trailing hemisphere, O2 and O3 on Ganymede’s trailing hemisphere, and SO2 on Callisto’s leading hemisphere. All three of Jupiter’s icy satellites show evidence of excess oxygen being produced in the surface ices, though it appears that when sulphur is present in the ice it competes effectively for the oxygen and limits the production of O3. The origin of the sulphur may either be external or may be related to the fraction of non-ice components present on the surfaces of Jupiter’s icy satellites. Although there is circumstantial evidence linking changes in albedo and spectrophotometric properties of Jupiter’s satellites to the observed hemispheric compositional differences, a common causal connection has not been established. Saturn’s satellites are smaller than Jupiter’s and the surfaces are nearly pure water ice; these two significant differences may constrain the conditions under which O3 is formed and determine if spectrophotometric and compositional changes can be related.

Ozone appears to be present at a similar abundance on both leading and trailing hemispheres of Rhea and Dione. The trailing hemispheres of both satellites have lower albedos than their leading hemispheres, but the difference between the albedo in the ultraviolet absorption feature at 260 nm and the albedo in the visible wavelength continuum at 600 nm is very similar, 0.3–0.35 albedo units. Differences in albedo at visible wavelengths between leading and trailing hemispheres of Rhea and Dione must be related to the presence of small quantities of non-ice materials such as organic residues or minerals that will also absorb at ultraviolet wavelengths. A natural explanation of the apparent similarity in the shape of the feature would arise if the surfaces could be described as areal mixtures of spectrally distinct material. The similarity of the O3 absorption depths on both hemispheres of Rhea and Dione requires that the charged particles initiating O2 and O3 production have energies sufficiently high that their incidence on the surface is nearly isotropic. It has been shown that 20-keV oxygen ions will strike Dione nearly isotropically whereas colder oxygen ions (0.2–keV) do not, possibly indicating a minimum required energy for obtaining a measurable quantity of O3. The energy of an ion with a gyroradius equal to the satellite radius is 43 times higher for Ganymede than for Dione, a fact that may account for the apparent difference in longitudinal distribution of O3 between Dione and Rhea compared to Ganymede.

Figure 1 Geometric albedos of Rhea, Dione and Iapetus as a function of wavelength. Spectra of both leading (L) and trailing (T) hemispheres are shown. The thick solid curves are the HST data reported here. Discrete points are from Roush et al. from a variety of sources, thin solid curves are scaled reflectances from Vilas et al. Dione albedos are offset by +0.5, Rhea albedos by +1.0, and the spectrum of Iapetus’ dark leading hemisphere has been scaled by a factor of 2.5 for clarity. Spectra of Iapetus and Rhea’s trailing hemisphere were corrected for scattered light at wavelengths below 220 nm. The correction is small for wavelengths greater than 200 nm. Both hemispheres of Rhea and Dione have pronounced minima at 260 nm. The Iapetus spectra also appear to have weak minima, but at different wavelengths than Rhea and Dione. For Rhea’s trailing hemisphere we also obtained data at wavelengths less than 220 nm. The data here suggest that there may be a second minimum at ~210 nm, though the signal-to-noise ratio is too low to be definitive. A similar minimum was noted in Callisto’s spectrum but has not been identified.

Figure 2 The predictions of a model including O3 (solid line), plotted with the spectrum of Rhea’s leading (L) hemisphere (dotted curve). The continuum consists of a mixture of 97.5% ice and 2.5% organic residues from an irradiated 6:1 mixture of H2O ice and C2H6 ice (sometimes called ice tholins, upper dotted line) with an additional constant-slope absorber below 477 nm (dashed line). This added absorption is required both to fit the observed spectrum from 350 to 450 nm and also to account for the fact that at wavelengths below 220 nm the albedo of Rhea’s trailing hemisphere remains low. Other mixes of candidate continuum absorbers are also possible, but are not tested in our models.
The detection of O₃ on Rhea and Dione is the first evidence that the accumulation of oxygen and ozone in icy surfaces exposed to ion irradiation may be a widespread process with significance in at least two areas outside the study of the Solar System. Molecular oxygen has been predicted to be abundant in the mantles of interstellar grains in dense clouds and production of O₂ in these grains via irradiation by cosmic rays, stellar winds, or ultraviolet light may be an important factor to consider in models of grain chemistry. A significant component of the Earth's atmosphere was probably derived from impacts of icy comets. If the ices in these comets contain excess oxygen produced by irradiation as the comet accretes, the volatiles delivered to a planetary atmosphere in this way could contain as much as a few per cent O₂ by mass (in excess of the oxygen contained in H₂O ice). Because ozone is a very nonlinear tracer of molecular oxygen in a planetary atmosphere, an Earth-like atmosphere with a partial pressure of O₂ of only 2 mbar, an amount that could conceivably be supplied by O₂-saturated ices, would have a detectable column of O₃ only one-quarter that in Earth's present atmosphere (2 mbar is 2% of Earth's sea-level pressure or ~10% of the O₃ currently in the atmosphere). The identification of oxygen-containing atmospheres on extrasolar planets through detection of O₂ may not, therefore, be an unambiguous way of identifying planets with Earth-like biology.

Received 27 March, accepted 13 May 1997.

20. Noll, K. S., Johnson, R. E., Lane, A. L., Domingue, D. & Weaver, H. A. Detection of ozone on Europa's UV band of O₃ as a means to identify planets with massive O₂ atmospheres. A significant component of the Earth's atmosphere was probably derived from impacts of icy comets. If the ices in these comets contain excess oxygen produced by irradiation as the comet accretes, the volatiles delivered to a planetary atmosphere in this way could contain as much as a few per cent O₂ by mass (in excess of the oxygen contained in H₂O ice). Because ozone is a very nonlinear tracer of molecular oxygen in a planetary atmosphere, an Earth-like atmosphere with a partial pressure of O₂ of only 2 mbar, an amount that could conceivably be supplied by O₂-saturated ices, would have a detectable column of O₃ only one-quarter that in Earth's present atmosphere (2 mbar is 2% of Earth's sea-level pressure or ~10% of the O₃ currently in the atmosphere). The identification of oxygen-containing atmospheres on extrasolar planets through detection of O₂ may not, therefore, be an unambiguous way of identifying planets with Earth-like biology.