Escape of atoms from Mars: A comparison of the exobase approximation to a Monte Carlo method

Jane L Fox
Wright State University
Dayton, OH
Mars Thermosphere

12 Background species: CO₂, O, N₂, Ar, CO, O₂, NO, N, C, He, H, H₂
O photochemical escape: mostly O_2^+ DR
O escape energy 1.98 eV

1. $O_2^+ + e \rightarrow O(^3P) + O(^3P) + 6.95 \text{ eV}$
2. $O_2^+ + e \rightarrow O(^1D) + O(^3P) + 4.98 \text{ eV}$
3. $O_2^+ + e \rightarrow O(^1D) + O(^1D) + 3.02 \text{ eV}$
4. $O_2^+ + e \rightarrow O(^1S) + O(^3P) + 2.76 \text{ eV}$ (branching ratio=0)
5. $O_2^+ + e \rightarrow O(^1D) + O(^1S) + 0.83 \text{ eV}$

Branching ratios depend on vibrational level of O_2^+ (v) and E_{coll}
(e.g., Petrignani et al., 2005a,b; Peverall et al., 2000, 2001)

No simultaneous measurements of v dependence and T_e
dependence of branching ratios or rate coefficients.
Energy distributions of 18O and 16O in O$_2^+$ DR in the lab frame
Monte Carlo calculations of escape probabilities

- Follow the atoms from collision to collision in space until their energy drops below escape energy or they reach 700 km with energy above escape energy
- Atoms are allowed to travel at any angle in spherical geometry to any altitude (i.e. they are not binned)
- Details in Fox and Hać (2009, 2010).
- First use 3×10^{-15} cm2 for elastic σ for all species pairs
- Then use different cross sections for different species pairs
- O- CO$_2$ elastic σ unknown but very important!! HELP!!!!
- We adopt 1.2×10^{-14} cm2
- equal to O-Ar; similar to O-N$_2$ 1.8×10^{-14} cm2)
Escape probability as a function of energy and altitude

Left: 2009, constant σ
Right: 2012 different σ for each species pair
Monte Carlo calculations of production rates of escaping O and total O$_2^+$ DR rates
Compare Fluxes for Monte Carlo to those for Exobase approximation ($\text{cm}^{-2}\text{s}^{-1}$)

- High solar activity, Non-eroded model: (old)
 - Exobase: 6.7×10^7; Monte Carlo: 4.4×10^8
 - New: Exobase: 3.4×10^7; Monte Carlo 1.2×10^8

- High solar activity, eroded model (old):
 - Exobase 2.4×10^7; Monte Carlo 3.6×10^8
 - New: Exobase 1.1×10^7; Monte Carlo 6.9×10^7
Improvements to be made

• Add inelastic scattering $\text{O-CO}_2(\nu_2)$
• Differentiate between O and $\text{O}^{(1}\text{D})$
• Include quenching of $\text{O}^{(1}\text{D})$, excitation of $\text{O}^{(3}\text{P})$
• Include transformations between $\text{O}^{(3}\text{P})$ and $\text{O}^{(1}\text{D})$
Table of Escape Rates for Monte Carlo and Exobase approximation

<table>
<thead>
<tr>
<th>Model</th>
<th>Low Solar Activity</th>
<th>High Solar Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-eroded</td>
<td>eroded</td>
</tr>
<tr>
<td>Isotropica</td>
<td>2.1(7)d</td>
<td>1.2(7)</td>
</tr>
<tr>
<td>Forwardb</td>
<td>2.5(8)</td>
<td>2.2(8)</td>
</tr>
<tr>
<td>Exobasec</td>
<td>2.9(7)</td>
<td>1.2(7)</td>
</tr>
</tbody>
</table>

a Isotropic scattering model

b Forward scattering model

c Exobase model

d The numbers in parentheses represent uncertainties.
The Exobase Approximation: RIP