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Abstract
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an essentially stable and Pareto efficient matching always exists and investigate the

properties of the set of essentially stable matchings. We then classify popular Pareto

efficient mechanisms: those based on Shapley and Scarf’s TTC mechanism are not
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1 Introduction

There exists a trade-off between efficiency and fairness in matching problems. The celebrated

deferred acceptance (DA) mechanism of Gale and Shapley (1962) always produces a fair

matching, and in fact produces the most efficient matching among all fair ones. However,

it does not always produce a Pareto efficient matching: there may be unfair matchings that

Pareto dominate it. Are all unfair matchings equally unfair? We argue that the answer is

no, and in fact the fairness criterion typically used in the literature excludes many matchings

unnecessarily. We propose a new fairness criterion that takes these matchings into account

and is not at odds with efficiency.

There are many real-world examples of problems that fit into our framework, but perhaps

the largest and most important is public school choice as instituted in many cities across the

United States and around the world. Fairness is a crucial concern for many school districts

because they must be able to justify why one student is admitted to a school and another is

rejected, or else be vulnerable to legal action. This is typically done by assigning priorities

to each student at each school according to some set criteria (which may vary across school

districts) and then running a well-defined matching mechanism that takes these priorities

and the student preferences as inputs.

In this framework, the standard approach in the literature is to use the mathematical

definition of stability as a formal fairness criterion.1 Given a matching, a student is said

to have a (justified) claim to school A if she prefers A to her assignment and she has

higher priority than another student who is assigned to A. A matching is stable if there

are no claims. In other words, stable matchings are “fair” because they eliminate justified

envy (Abdulkadiroğlu and Sönmez, 2003), and a school district can easily explain why some

student j was not admitted to a school A (even though she prefers it) and another student

i was: i has higher priority than j at A.

At first glance, the classic use of stability as the standard for fairness seems very reason-

able, because it ensures that there are no claims. However, this simple definition actually

misses a subtle (and important) point: if a student were to have a claim to a seat at a school,

granting her claim displaces a student currently assigned to that school. This student will

1In fact, some authors simply define the word “fair” to mean “stable” (see, e.g., Balinski and Sönmez
(1999)). In this paper, we use the term in its normative sense, and will argue that the definition of fairness
as being equivalent to stability is too restrictive: there are matchings that are not stable according to the
formal definition, but are fair according to a reasonable understanding of the term. See also footnote 12 in
Section 2.
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then have to be reassigned, and, using the same justification as the initial student, she can

claim her favorite school at which she has high enough priority. This will displace yet another

student, and so on. Eventually, this chain of reassignments will end when some student is

reassigned to a school with an empty seat (or determines that everything that is available is

unacceptable to her and takes her outside option). It is possible that the student who made

the initial claim will be displaced by some student further down the chain. In that case,

the student will ultimately not receive the school to which she laid claim so her claim is not

justified, but rather is vacuous. Ruling out all claims, even vacuous ones, makes stability

unnecessarily restrictive.

The widespread success of DA as an assignment mechanism suggests that fairness is in-

deed important in many real-world markets.2 However, the efficiency losses from eliminating

all claims (e.g., by running a stable mechanism such as DA) can be significant in practice.

For example, using data from eighth-grade assignment in New York City, Abdulkadiroğlu

et al. (2009) show that, by moving from the DA matching to a Pareto efficient matching,

over 4,000 students could be made better off each year (on average) without making a single

student worse off.

We thus propose a new definition that expands the set of stable matchings by allowing

some claims to remain: namely, those that are vacuous. While this is a weaker fairness

criterion, we argue that it captures the essential feature of stability as a fairness standard, in

the sense that if a student were to try to assert her claim, we can clearly explain to her why

doing so will be for naught. For example, if some student i were to claim a seat at school A,

one could convince her to relinquish this claim by walking her through its ultimate effects

in the following way:

“Yes, I agree that your claim at A is valid because you have higher priority than

student j. But, if I assign you to A, then j will need to be reassigned, and she

will claim B, and her claim at B is equally as valid as yours was at A. This will

displace student k, who will then claim A, and, because she has higher priority

than you at A, I will need to give it to her. So, while you may claim A, ultimately,

you will not receive it anyway.”

For this reason, we call a matching in which all claims are vacuous an essentially stable

matching.

2See Abdulkadiroğlu et al. (2005a) and Abdulkadiroğlu et al. (2005b) for discussions of implementing
DA in New York City and Boston, respectively.
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Imposing the less stringent constraint of essential stability allows us to implement a larger

set of fair matchings. In contrast to the set of stable matchings, we show (Theorem 1) that

the set of essentially stable matchings always contains at least one Pareto efficient matching,

i.e., an essentially stable and Pareto efficient (ESPE) matching always exists. In other words,

essential stability provides a solution to the trade-off between fairness and efficiency, as there

is always a matching that possesses both properties.

We analyze the structure of the set of essentially stable matchings and show that it

retains some, though not all, of the properties of the set of stable matchings. One of the

most famous results in matching theory is that the set of stable matchings forms a lattice,

which in particular implies that there exists a unique student-optimal stable matching and

a unique student-pessimal stable matching. In addition to existence, Theorem 1 shows that

there may be multiple ESPE matchings, which implies that the set of essentially stable

matchings may not form a lattice. On the other hand, the student-pessimal stable matching

is also the student-pessimal essentially stable matching (Theorem 2), a structural result

which turns out to be key to understanding the incentive properties of essentially stable

mechanisms (Theorems 5 and 6, discussed below). Last, we show that the Rural Hospital

Theorem (Roth, 1986) extends to the set of essentially stable matchings: all schools that

are not filled to capacity at some essentially stable matching are assigned the same set of

students at all of them (Theorem 3).

After defining essential stability and analyzing the structure of the set of essentially stable

matchings, we turn to mechanisms for implementation. The ultimate reason for relaxing

stability in the first place is to achieve the Pareto frontier, and so we consider the three

main Pareto efficient mechanisms that have been proposed in the literature: the top trading

cycles (TTC) mechanism of Shapley and Scarf (1974), extended to school choice settings

by Abdulkadiroğlu and Sönmez (2003); the DA+TTC mechanism that first runs DA and

then searches for “improvement cycles” over the DA matching; and the efficiency-adjusted

deferred acceptance (EADA) mechanism of Kesten (2010).3 We show that neither TTC nor

DA+TTC are essentially stable, i.e., they are strongly unstable. EADA, on the other hand,

is essentially stable; therefore it produces a ESPE matching.

Finally, we study the incentive properties of essentially stable mechanisms. While it

is known that EADA is not strategyproof, we can use Theorem 2 combined with a result

of Alva and Manjunath (2017) to show this extends to the broader class of ESPE mecha-

nisms: no ESPE mechanism is strategyproof (Theorem 5). This points to a trade-off among

3We consider EADA where all students “consent”, which produces a Pareto efficient matching.
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fairness, Pareto efficiency, and strategyproofness: a mechanism exists to obtain any two of

these properties, but no mechanism achieves all three. Nevertheless, strategy-proofness is

a demanding criterion, and recent work by Troyan and Morrill (2018) has investigated the

severity of manipulations. Their results, when combined with our Theorem 2, imply that any

essentially stable mechanism is not obviously manipulable (Theorem 6), and so the incentive

problem may not be so severe. In summary, given all of our results and the significant welfare

losses associated with DA, we believe ESPE mechanisms constitute a potentially attractive

alternative class of mechanisms that are at least worthy of further investigation.

Related Literature

Our paper is related to a growing literature that investigates weaker definitions of stability

that are compatible with efficiency. Most papers in this literature are loosely based on the

idea that a student with a claim must propose an alternative matching that is free of any

counter-claims (and possibly some other conditions too) or else her initial claim can be dis-

regarded. Work in this vein includes Morrill (2015), who introduces the the concept of a just

assignment, Alcalde and Romero-Medina (2015), who introduce the concept of τ−fairness,

and Cantala and Pápai (2014), who discuss the concepts of reasonable stability and secure

stability.4 Also very closely related is Morrill (2016), who defines a legal assignment, where,

in legal terminology, a student i’s claim at a school c is not redressable (and thus can be

disregarded) unless i can propose an alternative assignment (i.e., matching) that is “legal”

and at which she is assigned to c (see also Ehlers and Morrill (2017)). He introduces an iter-

ative procedure for finding the set of legal assignments, which he shows is equivalent to the

von Neumann-Morgenstern stable set (Von Neumann and Morgenstern, 1944).5 Tang and

Zhang (2016) introduce their own new definition of weak stability for school choice problems

that is also closely related to vNM stable sets. While sharing a similar motivation, all are

independent properties, and in Appendix B, we show formally that these other concepts are

distinct from ours.

A different strand of related literature focuses on mechanisms (rather than matchings),

and in particular on a class of mechanisms that, besides simply asking students to report

their preferences, also asks them if they “consent” to having their priority violated. The

goal is then to use a mechanism that ensures students cannot gain from not consenting, or

in other words the mechanism should be no-consent-proof. This is the original approach

4Reasonable stability was first defined in Kesten (2004)
5Ehlers (2007) studies vNM stable sets in the context of marriage markets (see also Wako (2010)).
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taken in Kesten’s paper introducing the EADA mechanism, and was further expanded by

Dur et al. (2015), who show that EADA is in fact the unique constrained efficient mechanism

that Pareto dominates DA and is no-consent-proof.6 The reason that EADA is no-consent-

proof is that a student’s own assignment is unaffected by her consent decision, and so all

students are actually indifferent between consenting and not consenting. While related,

there is an important conceptual distinction between the approaches. Essential stability is a

fairness criterion that relaxes stability; no-consent-proofness is a justification for why, given

a particular mechanism, students should affirmatively consent to violations of the classical

definition of stability. In other words, essential stability is a property of matchings, while

no-consent-proofness is a property of mechanisms, which are conceptually more complex

than matchings.7

We believe that essential stability stands out as a particularly straightforward way to ex-

plain and justify priority violations to non-experts, which makes it well-suited for practical

applications. It does not require understanding the inner workings of a mechanism or how

to iteratively calculate a specific set of matchings. Rather, essential stability puts a simple

condition on any given matching: all claims (if any) must be vacuous. The distinction be-

tween vacuous and non-vacuous claims can, in turn, be made clear to policymakers by fixing

a particular matching and walking them through a concrete reassignment chain. This idea

could, for example, be easily visually communicated in a simple information brochure. Nev-

ertheless, given the importance of reconciling efficiency and fairness, it is obviously beneficial

to have multiple ways to think about the issue, and the other ideas discussed above provide

valuable insights and elegant theoretical justifications for what it means for a matching to

be fair. As such, we view our more applied approach as complementary to this literature.

From a broader perspective, our paper also contributes to a growing literature on how to

define stability when agents may anticipate more than one step of blocking, a question that

has received considerable attention in other game-theoretic contexts. The central concept in

this literature is called farsightedness: an outcome is stable if there does not exist a series

of blocks that culminate in better outcomes for every agent who participates in it. Farsight-

6Dur et al. (2015) also have a relaxation of stability called partial stability that exogenously takes a
subset of priority violations as allowable. A partially stable matching is then constrained efficient if it is not
Pareto-dominated by any other partially stable matching.

7Of course, the definition of essential stability can be easily extended to mechanisms in the natural way
by defining a mechanism as essentially stable if it always produces an essentially stable matching. While it so
happens that EADA is both no-consent-proof and essentially stable, there is no a priori logical relationship
between these properties: there are no-consent-proof mechanisms that are not essentially stable, as well as
essentially stable mechanisms that are not no-consent-proof.
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edness was first introduced by Harsanyi (1974) as a criticism of von Neumann-Morgenstern

stable sets. In more recent work, Ray and Vohra (2015) and Dutta and Vohra (2017) care-

fully address farsightedness in coalition formation games. Page Jr et al. (2005) and Herings

et al. (2009) consider related issues in network formation games. While similar in the sense

that both look more than one step ahead, the ultimate effect of essential stability is actually

opposite to that of farsightedness: farsightedness excludes myopically stable outcomes by

providing a series of blocks that makes the initial outcome ultimately unstable, while essen-

tial stability includes myopically unstable outcomes by showing that a series of reassignments

nullifies the original block. This allows expending the set of admissible matchings in order

to reach the Pareto frontier.

The remainder of the paper is organized as follows. We formally introduce essential

stability in Section 2. Section 3 is devoted to the set of essentially stable matchings and

its structure. In Section 4, we study whether well-known mechanisms are essentially stable.

Section 5 concludes. All proofs not in the main text can be found in the appendix.

2 Preliminaries

2.1 Model

There is a set of students S who are to be assigned to a set of schools (or “colleges”) C.

Each i ∈ S has a strict preference relation Pi over C and each c ∈ C has a strict priority

relation �c over S. Let P = (Pi)i∈S denote a profile of preference relations, one for each

student, and �= (�)c∈C denote a profile of priority relations.8 Each c ∈ C has a capacity qc,

which is the number of students that can be assigned to it. Let q = (qc)c∈C denote a profile

of capacities. We assume S, C, �, and q are fixed throughout the paper, and associate a

market with its preference profile P . For concreteness, we use the school choice terminology

throughout as it is the best-known application; however, the model can be applied to many

other real-world assignment problems. Examples include the military assigning cadets to

branches, business schools assigning students to projects, universities assigning students to

dormitories, or cities assigning public housing units to tenants.9

8We also compare the priority of sets of students based on responsiveness (see Roth (1985)). For any
I ⊂ S, any i, j ∈ S \ I, and any c ∈ C, I ∪ {i} �c I ∪ {j} whenever i �c j.

9For more detail on these markets, see Sönmez (2013), Sönmez and Switzer (2013), Fragiadakis and
Troyan (2016), Chen and Sönmez (2002), Chen and Sönmez (2004), Sönmez and Ünver (2005), Sönmez and
Ünver (2010), and Thakral (2015).
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A matching is a correspondence µ : S ∪ C → S ∪ C such that, for all (i, c) ∈ S × C,

µ(i) ∈ C, µ(c) ⊆ S, |µ(c)| ≤ qc, and µ(i) = c if and only if i ∈ µ(c).10 A matching ν Pareto

dominates a matching µ if ν(i)Riµ(i) for all i ∈ S, and ν(i)Piµ(i) for at least one i ∈ S.11

A matching µ is Pareto efficient if it is not Pareto dominated by any other matching ν.

Note that Pareto efficiency is evaluated only from the perspective of the students S, and not

the schools C. This is a standard view in the mechanism design approach to school choice,

beginning with the seminal papers of Balinski and Sönmez (1999) and Abdulkadiroğlu and

Sönmez (2003).

In addition to Pareto efficiency, in many applications (particularly in school choice),

market designers also care about fairness. The most common fairness criterion is stability.12

Given a matching µ, we say student i claims a seat at school c if (i) cPiµ(i) and (ii) either

|µ(c)| < qc or i �c j for some j ∈ µ(c). We will sometimes use (i, c) to denote i’s claim to

c. If no student claims a seat at any school, then we say µ is stable. Stability is a fairness

criterion in the sense that it ensures priorities are respected: a student only misses out on a

school she wants if that school is filled to capacity with higher-priority students.

2.2 Motivating Example

Deferred acceptance (DA) is one of the benchmark mechanisms that form the foundation

for both the theory and practice of a myriad of matching markets.13 DA is an enormously

successful mechanism in the field because it produces the student-optimal stable matching:

that is, the DA outcome is stable, and, for any other stable matching ν, ν is Pareto dominated

by µDA. The prevalence of DA in the field suggests that stability plays an important role in

many settings as a fairness standard. However, as discussed in the introduction, eliminating

10We assume all students are assigned to a school and vice-versa. While in practice some students may
prefer taking an “outside option” to some schools, our model is without loss of generality, as we could simply
model the outside option as a particular school o ∈ C with capacity qo ≥ |S|.

11Ri denotes the weak part of i’s preference relation Pi. Given the assumption that preferences are strict,
aRib but not aPib if and only if a = b. We analogously denote by �c the weak part of c’s priority relation
�c.

12The term stability was first introduced by Gale and Shapley (1962) and is standard in the two-sided
literature. In one-sided matching models such as school choice, some papers use other terminology such
as “fairness” (Balinski and Sönmez, 1999) or “elimination of justified envy” (Abdulkadiroğlu and Sönmez,
2003) to refer to concepts that are mathematically equivalent to stability. To avoid confusion, we stick with
“stability” for our formal definition because we think it is the most familiar, and reserve the word “fairness”
for the normative concept. See also footnote 1.

13In particular, we consider the student-proposing version of the DA mechanism. DA is very well-known,
and so we do not provide a formal definition here. Such a definition can be found in (for example) Gale and
Shapley (1962) or Abdulkadiroğlu and Sönmez (2003).
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all claims comes at the price of efficiency: DA is not a Pareto efficient mechanism. The

example below illustrates this point, and serves to motivate our new definition. Throughout

the paper, given preferences P , the matching produced by the DA mechanism is denoted

as either DA(P ), or, if the preferences are understood, as µDA. Student i’s assigned school

under the DA matching is denoted as either DAi(P ), or, if the preferences are understood,

as µDA(i).

Example 1. Let there be 5 students, S = {i1, i2, i3, i4, i5}, and 5 schools with capacity 1,

C = {A,B,C,D,E}. The priorities and preferences are given in the following tables.

�A �B �C �D �E
i1 i2 i3 i4

...

i2 i3 i4 i5

i4 i1 i2 i3
...

...
...

...

Pi1 Pi2 Pi3 Pi4 Pi5

†B †C∗ B∗ †A D

A∗ A †D C †E∗
... B C D∗ ...

...
...

...

The table on the right indicates three different potential matchings, a matching µ� (de-

noted by boxes �), and two Pareto efficient matchings µ∗ (denoted by stars ∗) and µ†

(denoted by daggers †). The DA matching µDA in this example is µ�, which therefore can

readily be shown to be stable. It is, however, not Pareto efficient: it is easy to see that it

is Pareto dominated by both µ∗ and µ†. This of course implies that µ∗ and µ† are both

unstable. For instance, at µ∗, student i4 claims the seat at C (because i4 �C i2 = µ∗(C))

and at µ†, student i3 claims the seat at B (because i3 �B i1 = µ†(B)) and student i5 claims

the seat at D (because i5 �B i3 = µ†(D)).

There are simpler examples to show that the DA matching may not be Pareto efficient.

We present this one to illustrate the main point of our paper, which is that not all instability

is the same. We argue that µ∗ is truly unstable while µ† is not.

To understand our argument, consider µ† first. Suppose student i3 claims the seat at

school B. If we grant i3’s claim and assign her to B, then student i1 becomes unmatched.

Student i1 must be assigned somewhere, and (using the same logic as i3), she can ask to be

assigned to A, her next most-preferred school where she has higher priority than the student

who is matched to it (student i4). Granting i1’s claim just as we did i3’s, she is assigned to

A and now student i4 is unmatched. Student i4 then asks for C, which is her most preferred

school where she has high enough priority to be assigned. Student i2 is now unmatched, and
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asks for B,14 which means student i3 is removed from B. In summary, student i3 starts by

claiming B. If her request is granted based on the fact that i3 �B i1, then we must also

grant the next request of i1, since she has the same justification for claiming A as i3 did for

claiming B. Continuing, we see that ultimately another student with higher priority than

i3 at B (in this case i2) ends up claiming it, and so i3’s initial claim is unfounded, or as

we will call it, vacuous. Student i5’s claim to D also begins a chain of reassignments where

eventually i4 takes D away, so i5’s claim is also vacuous.

Now let us contrast this with the instability found in matching µ∗. Assume that student

i4 claims the seat at C, and this request is granted. Following similar logic to the above, i2

then asks for B, and i3 asks for D. This is the end of our reassignments because D is the

school that i4 gave up to claim C. In this case, the original claimant’s (student i4) request

does not result in her ultimately losing the school she claimed to a higher priority student,

and therefore this claim is not vacuous in the manner that the claims at µ† were.

Thus, both µ∗ and µ† are unstable, but in different ways (which will be made more

precise in a moment). While student i3 can protest µ† and request B, if she does so, she

will ultimately be rejected from B. What is more, while in practice students may not fully

understand the workings of the mechanism, if a student were to protest, it would be very

easy to walk her through the above chain of reassignments to show her that granting her

request would ultimately not be beneficial to her, and therefore convince her to relinquish

her claim. Thus, to the extent that the goal of imposing stability is to prevent students from

protesting their assignment, matchings like µ†, while not fully stable in the classical sense,

are “essentially” stable.

On the other hand, the instability of matching µ∗ is a much stronger type of instability,

because i4 will ultimately benefit from claiming C, and so we would not be able to convince

her to relinquish her claim. Our new definition of stability is designed to capture this idea

and, in the process, recover inefficiencies by expanding the set of permissible matchings to

include those like µ†, but still exclude those like µ∗.

2.3 Essentially Stable Matchings

We now formalize the intuition from the previous example. Recall that, fixing a matching

µ, we use the notation (i, c) to denote i’s claim to a seat at c.

14Note that her next most preferred school is A, but school A is now assigned to i1 and i1 �A i2, so she
cannot get A and must go to B.
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Definition 1. Consider a matching µ and a claim (i, c). The reassignment chain initiated

by claim (i, c) is the list

i0 → c0 → i1 → c1 → · · · → iK → cK

where,

• i0 = i, µ0 = µ, c0 = c and for each k ≥ 1:

• ik is the lowest-priority student in µk−1(ck−1),

• µk is defined as: µk(j) = µk−1(j), for all j 6= ik−1, ik, µk(ik−1) = ck−1, and student ik is

unassigned,15

• ck is student ik’s most preferred school where she can claim a seat at µk,

• and terminates at the first K such that |µK(cK)| < qcK .

We should note a few features of reassignment chains. First, a student i may claim a seat

at a school c either because c is not filled to capacity, or because she has higher priority

than someone currently assigned there. Whenever the former occurs, that is the end of the

reassignment chain (if this occurs immediately, then the original matching µ was wasteful).

Second, when a student is rejected, she can claim a seat at a school she prefers to the school

that rejected her.16 Last, note that a school or a student can appear multiple times in a

reassignment chain.17

For a reassignment chain Γ started by a claim (i, c), if there exists k 6= 0 such that ik = i,

we say that the reassignment chain returns to i. If the reassignment chain returns to i, then

i will ultimately be removed from the school c that she claimed initially by some student

with higher priority. When this is the case, we say that claim (i, c) is vacuous.

15Note that µk does not fully satisfy our definition of a matching since student ik is unassigned. However,
this is not important, as ik is immediately reassigned in the next step.

16This and the fact that they start with a student makes reassignment chains slightly different from the
notion of rejection chains.

17Note also that reassignment chains are well-defined (i.e., they must end in finite steps). This is because,
if a student ik is rejected from a school ck−1, then µk(ck−1) must be filled to capacity with higher priority
students. For all k′ > k, the lowest priority student in µk′

(ck−1) only increases, and thus, if ik is ever
rejected again later in the chain, the best school at which she can claim a seat is ranked lower than ck−1.
Since students only apply to worse and worse schools as the chain progresses and preference lists are finite
in length, the chain must end.
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Definition 2. Matching µ is essentially stable if all claims at µ are vacuous. If there

exists at least one claim at µ that is not vacuous, µ is strongly unstable.

A mechanism ψ is said to be essentially stable if ψ(P ) is an essentially stable matching

for all P . If ψ is not essentially stable, then we say it is strongly unstable.

We defined a claim (i, c) as vacuous as soon as the induced reassignment chain returns

to i and ultimately rejects her from c. However, one might argue that maybe i claims a seat

at a very good school c and, while she is rejected from c in the reassignment chain, perhaps

i’s final assignment at the end of the chain is still better than i’s original school. A possible

alternative would be to define (i, c) as vacuous if i ends up matched to her original school

µ(i) at the end of the reassignment chain. The next result shows that this would not affect

Definition 2:18

Proposition 1. For any essentially stable matching µ, the reassignment chain initiated by

any (vacuous) claim (i, c) ends with i matched to µ(i).

The intuition for Proposition 1 is that all of i’s claims, which are vacuous at µ by defini-

tion, remain vacuous throughout Γ so that any school that i prefers to µ(i) ends up rejecting

her.

Returning to Example 1, we can check that µ† is essentially stable, while µ∗ is strongly

unstable. As we showed above, at µ†, the claims (i3, B) and (i5, D) are vacuous, because

they ultimately result in the initial claimant losing the seat she claimed to a higher priority

student. At µ∗, on the other hand, the reassignment chain initiated by (i4, C) ends with i4

assigned to C. Thus, i4’s claim is not vacuous.

3 Structure

The set of stable matchings contains a significant amount of structure, and understanding

this structure has been an area of extensive investigation in the (large) literature on stable

matchings. Two of the canonical results in the theory of stable matching are (1) the set of

stable matchings is a lattice, which implies the existence of a student-optimal stable matching

18Another possible concern one might have is that counter-claims along a reassignment chain may them-
selves be vacuous, which would undermine the argument for disregarding the initial claim. However, as we
show in Appendix D, removing these vacuous counter-claims does not affect essential stability, and thus we
are justified in working directly with the simpler definition given here. We thank an anonymous referee for
raising this point.
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µo and a student-pessimal stable matching µp,19 and (2) those schools that are not filled to

capacity are assigned the same set of students in all stable matchings, a property known as

the Rural Hospital Theorem (Roth, 1986).

In this section, we investigate whether these properties continue to apply to the set of

essentially stable matchings. We show that an essentially stable and Pareto efficient (ESPE)

matching always exists. Further, we show that the set of essentially stable matchings retains

some, though not all, of the structure of the set of stable matchings: in particular, the

student-pessimal stable matching, µp, is also the student-pessimal essentially stable matching

and the Rural Hospital Theorem continues to hold. However, unlike for the set of stable

matchings, there is not necessarily a unique student-optimal essentially stable matching, and

in particular, there may be multiple ESPE matchings.

Our first main result formally answers the questions of existence and uniqueness.

Theorem 1. There always exists a ESPE matching, but it may not be unique.

Formally, we prove existence by finding a mechanism that always produces a ESPE

matching (namely, Kesten’s EADA mechanism; see Theorem 4 in Section 4, where we discuss

mechanisms more generally). Multiplicity is proved in Appendix A.

The practical relevance of Theorem 1 is two-fold. First, the existence of a ESPE matching

means that our definition does indeed reconcile fairness and efficiency. Second, the possible

multiplicity of ESPE matchings implies the absence of a student-optimal essentially stable

matching; in other words, unlike the set of stable matchings, the set of essentially stable

matchings may not have a (unique) maximal element. In contrast, our next result, Theorem

2, shows that it does have a minimal element, which coincides with minimal element of the

set of stable matchings. This turns out to have have important consequences, as it will allow

us to easily derive results on the incentive properties of essentially stable mechanisms in

Section 4.

We build up the proof of Theorem 2 using a series of lemmas. We first introduce the idea

of rotations, whose properties are key to our analysis. Given an essentially stable matching

µ and a (vacuous) claim (i, c) at µ, we define the rotation initiated by (i, c) at µ to be the

part of the reassignment chain up to the point where it returns to i (the chain returns to i

19µo is a matching that weakly Pareto dominates all stable matchings and µp is a matching that is weakly
Pareto dominated by all stable matchings; that is, for any stable matching µ and any student i, µoRiµRiµ

p.
In addition, we should also note that the opposite holds for the schools: for any stable matching µ and any
school c, µp �c µ �c µ

o (for this reason, µp is sometimes also called the school-optimal stable matching and
µo the school-pessimal stable matching).
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by definition since the claim is vacuous). That is, the rotation Γ̂ initiated by (i, c) at µ is

the list

i = i0 → c = c0 → i1 → c1 → i2 → c2 → · · · → iK̂ → c = cK̂ → i.

We denote by µΓ̂ the matching obtained when the rotation is carried out: µΓ̂(i) = µ(i)

and µΓ̂(j) = µK̂+1(j) for all j 6= i. In words, carrying out the rotation initiated by (i, c) at

µ means following the reassignment chain up to the point where it returns to i and match

i to her original school. We say that a student j appears in Γ̂ if there exists k = 1, . . . , K̂

such that j = ik (note that by this definition, i does not appear in Γ̂). Similarly, school d

appears in Γ̂ if there exists k = 1, . . . , K̂ such that d = ck.20

We now present three important properties of rotations, which as we will show, turn out

to have important consequences for the structure of the set of essentially stable matchings.

First of all, the following lemma shows that students and schools that appear in a rotation

are affected in a monotonic way.

Lemma 1. For every student j and every school d that appear in Γ̂:

µ(j)Pjµ
Γ̂(j) and µΓ̂(d) �d µ(d).

The statement related to schools is straightforward. At each step, a school replaces a

student by another with a higher priority; therefore by the end of the rotation it is assigned

a set of students with a higher priority overall.21 The statement related to students is not

as obvious. A student is assigned to her favorite school to which she has a claim and may

prefer that school to the one that just rejected her. However, as we show in the proof, that

school always rejects her before the end of the rotation. Students and schools that do not

appear in the rotation are not affected and are matched identically at µ and µΓ̂; therefore

Lemma 1 immediately implies the following result:22

Corollary 1.

µRµΓ̂ and µΓ̂ � µ.

Throughout a rotation, students get matched to the school they prefer among those to

which they have a claim; therefore any student who appears in Γ̂ does not have any claim at

20We analogously denote by µΓ = µK+1 the matching obtained when the whole reassignment chain Γ
is carried out and say that j and d appear in Γ if there exists k = 1, . . . ,K such that j = ik and d = ck,
respectively.

21For any school d, sets of students are ranked based on responsiveness (see footnote 8).
22We write µRν when all students weakly prefer their assignment at µ compared to ν: µ(i)Riν(i) for all

i. Analogously, µ � ν means that µ(c) �c ν(c) for all c.
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µΓ̂. As students who do not appear in Γ̂ are unaffected and µΓ̂ � µ, the rotation does not

create any new claim, as we formalize below:

Lemma 2. If student j has a claim to school d at µΓ̂, then she has a claim to d at µ.

Every claim at µΓ̂ is a claim at µ and, because µ is essentially stable, any such claim

is vacuous at µ. A natural question at this point is whether such a claim can become non-

vacuous as a result of a rotation. As we show in the appendix, this is not the case, which

implies that rotations preserve essential stability:

Lemma 3. µΓ̂ is essentially stable.

We now use these three lemmas to prove Theorem 2. Consider any essentially stable

matching µ. Either µ is stable, or there exists a (vacuous) claim (i, c) at µ. In the latter

case, it is possible to carry out the rotation Γ̂ induced by that claim in order to obtain µΓ̂.

By Lemmas 1 and 3, µΓ̂ is Pareto dominated by µ, assigns to all schools a weakly higher-

priority cohort than µ, and is essentially stable. By Lemma 2, any claim at µΓ̂ is a claim

at µ. In addition, (i, c) is a claim at µ by assumption but, as c rejects i at the end of Γ̂,

it is not a claim at µΓ̂. Combining the last two statements implies that µΓ̂ has strictly less

claims than µ. Starting from µ, it is possible to carry out rotations, one at a time, until

a stable matching ν (that is, an essentially stable matching with zero claims) is found. By

Lemma 1, µRν. Also, ν is weakly preferred to the student-pessimal stable matching µp and

so µRνRµp. The above argument implies the following result:23

Theorem 2. µp is the student-pessimal essentially stable matching.

Next, we turn our attention to the Rural Hospital Theorem and show that it holds for the

set of essentially stable matchings. The proof also makes use of rotations and their properties

and follows a similar argument to that of Theorem 2. Consider an essentially stable matching

µ. Unless µ is stable, there exists a (vacuous) claim (i, c) that induces a rotation Γ̂. Let d

be a school that is not filled to capacity at µ: |µ(d)| < qd. That school does not appear in

Γ̂, otherwise the corresponding reassignment chain Γ ends before it returns to i, which does

not happen since (i, c) is a vacuous claim. Therefore, µ(d) = µΓ̂(d). By Lemmas 2 and 3,

23Recall also that when considering the set of stable matchings, µp is not only the student-pessimal stable
matching, but is also the school-optimal stable matching (see footnote 19). This result also carries over to
the set of essentially stable matchings: µp is not only the student-pessimal essentially stable matching, but
is also the school-optimal essentially stable matching. The proof of this latter claim is analogous to that of
Theorem 2 since schools get higher priority students every time a rotation is carried out.
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µΓ̂(d) is essentially stable and has strictly less claims than µ. Starting from µ, it is possible

to carry out rotations, one at a time, until a stable matching ν is found. As none of these

rotations affect school d, µ(d) = ν(d). As shown by Roth (1986), ν(d) = ν ′(d) for any two

stable matchings ν and ν ′. Combining the last two statements yields our next result.

Theorem 3. (Rural Hospital Theorem) For any two essentially stable matchings µ and µ′

and any school d, |µ(d)| < qd implies µ(d) = µ′(d).

Our analysis reveals an asymmetric structure since an extreme matching exists on one

end but not on the other. Clearly, our negative result implies that the set of essentially

stable matchings does not form a full lattice; however, given the existence of a student-

pessimal essentially stable matching, it seems natural to think it may form a semilattice

(more precisely, a meet-semilattice with respect to the partial ordering R). We provide a

counterexample in Appendix C to show that, perhaps surprisingly, this is in fact not the

case.

4 Mechanisms

Essential stability allows relaxing the somewhat stringent requirement that is stability in

a meaningful way, thus allowing to improve the fate of students without compromising

on fairness. It is also desirable to have well-defined mechanisms to find essentially stable

matchings. Because the ultimate goal of relaxing stability is to reach efficiency, we focus on

three popular Pareto efficient alternatives: top trading cycles (TTC), a two-stage mechanism

that combines deferred acceptance with top trading cycles (DA+TTC), and the efficiency-

adjusted deferred acceptance (EADA) mechanism of Kesten (2010). Since it is well-known

that Pareto efficiency is in general incompatible with stability, the mechanisms we consider

are not stable; our goal is to assess whether they are essentially stable or strongly unstable.

Top Trading Cycles

Top trading cycles (TTC) is a classic mechanism that first appears in Shapley and Scarf

(1974) and was introduced to school choice problems by Abdulkadiroğlu and Sönmez (2003).

The intuition behind TTC is that a priority at a school is interpreted as an ownership right

to a seat at that school, which can be traded away: if i has high priority at j’s first choice,

and j has high priority at i’s first choice, then TTC allows i and j to trade, even though
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this may violate the priority of some third student k who is not involved in the trade. By

continually making all mutually beneficial trades, we eventually end up at a final matching

that is Pareto efficient.

Since the seminal paper of Abdulkadiroğlu and Sönmez (2003), there has been an ex-

tremely rich literature studying TTC in a school choice context. It is one of the mechanisms

most commonly suggested by economists because it is not only Pareto efficient, but is also

strategyproof. Despite these appealing features, its use in practice is very rare. One common

explanation for this is that TTC is not stable. Here, we strengthen this by showing that

TTC is not essentially stable either.

Proposition 2. The top trading cycles mechanism is strongly unstable.

Proof. The proof is by example. Let there be 5 students S = {i1, i2, i3, i4, i5} and 5

schools C = {A,B,C,D,E} with one seat each. The preferences and priorities are given in

the table below.

�A �B �C �D �E
i2 i3 i1 i4

...

i1 i4 i2 i3

i5 i1 i3
...

i4
...

...

i3

Pi1 Pi2 Pi3 Pi4 Pi5

B C C A A

A A D B E
... D B D

...
...

...
...

TTC proceeds with each student pointing to her favorite school and each school to its

top-priority student. In the initial round, there is one cycle: (i1, B, i3, C, i1). We implement

this trade between i1 and i3 and remove them from the market with their assignments. Then,

in the next round, i2 forms a self-cycle with A and is therefore assigned to it. In the final

round, i4 and i5 are assigned to D and E, respectively, and the final TTC outcome is

µTTC =

(
A B C D E

i2 i1 i3 i4 i5

)
.

Now, consider student i2, who claims a seat at school C. The reassignment chain initiated

by this claim is:

i2 → C → i3 → B → i1 → A.

We see that i2’s claim is not vacuous, and so µTTC is strongly unstable. �
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DA + TTC

The reason that TTC may produce strongly unstable matchings is that it completely ignores

the priorities of students not involved in a trade. An alternative analyzed by Cantala and

Pápai (2014) and Alcalde and Romero-Medina (2015) is to first calculate µDA, and then allow

students to trade by running TTC, using the initial DA assignments as the “endowments” in

the TTC mechanism.24 This mechanism will be Pareto efficient and a Pareto improvement

over DA (that is, it guarantees that students always receive an assignment that is no worse

than their DA school, which is not guaranteed by using TTC alone). As it takes priority

into account more than TTC does, it may intuitively appear as “fairer” than TTC; however,

the next result shows that this, too, is a strongly unstable mechanism.25

Proposition 3. The DA+TTC mechanism is strongly unstable.

Proof. Consider again Example 1. The DA outcome is

µDA =

(
A B C D E

i1 i2 i3 i4 i5

)
.

Now, TTC is applied by first giving each student her DA assignment as her initial en-

dowment, and then each student points to her favorite school, and the school points to the

student who is endowed with it. Carrying this out, we see that there is only one cycle,

(i2, C, i3, B, i2) and so we implement this trade between i2 and i3 and remove them from the

market with their assignments. After this, all remaining cycles are self-cycles, and so the

final allocation is

µDA+TTC =

(
A B C D E

i1 i3 i2 i4 i5

)
.

This is the matching µ∗ introduced in Example 1 which we found had a non-vacuous claim

and so we have that µDA+TTC is strongly unstable. �

24Related “improvement cycles” mechanisms were first proposed by Erdil and Ergin (2008) in the context
of school choice with weak priorities, where they look for stable improvement cycles.

25Cantala and Pápai (2014) and Alcalde and Romero-Medina (2015) propose alternative stability notions
that are satisfied by DA+TTC. See the introduction for further discussion.
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Efficiency-Adjusted Deferred Acceptance (EADA)

Combining DA and TTC is one very natural way to improve on deferred acceptance and reach

Pareto efficiency. Kesten (2010) takes a different approach: his EADA mechanism starts with

the DA matching, but asks students to “consent” to having their priority violated for a school

that they cannot obtain in any stable matching. As claims are given up, school seats become

less competitive and the mechanism is able to improve the fate of other students. If all

students consent, the EADA mechanism produces a matching that is Pareto efficient and

improves upon DA. This method of reaching efficiency differs starkly from the trading cycles

approaches, as it carefully keeps track of the student priorities. Of course, EADA will not

be stable, but as we now show, it is essentially stable.

In the proof of the result below, it actually turns out to be easier to work with the Sim-

plified Efficiency-Adjusted Deferred Acceptance (SEADA) mechanism. SEADA is a simpli-

fication of the original EADA mechanism that was introduced by Tang and Yu (2014), who

show that the two mechanisms are outcome-equivalent.26 Following their terminology, we

say that a school c is underdemanded at matching µ if µ(i)Ric for all i, that is all students

who are not matched to c prefer their assignment.

SEADA

Round 0 Compute the deferred acceptance outcome DA(P ). Identify the schools that

are underdemanded, and for each student at these schools, make their assignments

permanent. Remove these students and their assigned schools from the market.

Round r ≥ 1 Compute the DA outcome on the submarket consisting of those students who

still remain at the beginning of round r. Identify the schools that are underdemanded,

and for each student at these schools, make their assignments permanent. Remove

these students and their assigned schools from the market.

Let µ0 = DA(P ), and, for r ≥ 1, let µr denote the matching at the end of round r,

defined as follows: if i was removed from the market prior to the beginning of round r, then

µr(i) = µr−1(i); if i remains in the market at the beginning of round r, then µr(i) is the

school she is assigned at the end of DA on the round r submarket. The final output of

the mechanism is µSEADA = µR, where round R is the final round of the above mechanism.

Tang and Yu (2014) show that µR is equivalent to the matching produced by the EADA

26Further, the definition given below is the version of SEADA in which all students “consent”.
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mechanism, and is thus Pareto efficient. Our next result shows that this matching is also

essentially stable.

Theorem 4. The final matching produced by the SEADA mechanism is essentially stable.

The proof proceeds by defining two alternative preference profiles, one that gives i her

SEADA assignment when DA is run and one for which the rejection chain i starts when DA

is run is ultimately identical to the reassignment chain. Using the fact that DA is weakly

Maskin monotonic (Kojima and Manea, 2010), we show that both profiles must lead to the

same assignment for i and so the reassignment chain must end with i back at her SEADA

assignment. The full details can be found in the appendix.

Note that while Theorem 4 implies that a ESPE matching always exists, there may exist

multiple such matchings (see Theorem 1), in which case the EADA mechanism only finds one

of them. This opens the possibility that there are other simple ESPE mechanisms besides

EADA. Finding such mechanisms and defining criteria to select the “best” one constitutes

an interesting question, though one that is beyond the scope of this paper.

Strategic Properties

We close by investigating the strategic properties of essentially stable mechanisms. A (di-

rect) mechanism is strategyproof if, for each student, reporting her true ordinal prefer-

ences is a weakly dominant strategy. Strategyproofness is a demanding requirement; in

fact recent work by Alva and Manjunath (2017) shows that DA is the only strategyproof

and stable-dominating mechanism, where a mechanism is stable-dominating if it always

weakly Pareto dominates some stable matching. Combining this with our Theorem 2, which

shows that any essentially stable mechanism weakly Pareto dominates the student-pessimal

stable matching µp, we can conclude the following:

Theorem 5. The only essentially stable and strategyproof mechanism is the deferred accep-

tance mechanism.

By Theorem 5, all other strategyproof mechanisms besides DA are strongly unstable.

More broadly, our results shed a new light on the trade-off between fairness, efficiency, and

strategyproofness. Theorem 5 shows that no mechanism can achieve all three properties.

Among strategyproof mechanisms, the trade-off between efficiency and fairness is very well

understood and effectively comes down to choosing between DA and TTC. Our definition
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opens up a third option: combining efficiency and fairness by using a ESPE mechanism. We

believe there are good reasons to at least seriously consider this latter possibility.

First, as discussed in the introduction, the inefficiency of deferred acceptance is sizeable.

Second, just because a mechanism is not strategyproof does not necessarily imply that it

will be manipulated in practice. Building on the recent work of Li (2017) on obviousness in

mechanism design, Troyan and Morrill (2018) argue that the existence of some manipulations

may be tolerable, so long as these manipulations are not obvious manipulations. More

formally, given a student i with true preferences �i, Troyan and Morrill (2018) define a

manipulation �′i as obvious if either (i) the worst possible outcome from reporting �′i is

strictly better than the worst possible outcome from �i, (ii) the best possible outcome from

�′i is strictly better than the best possible outcome from �i, or (iii) no matter what other

agents report, the outcome from �′i is weakly better than the outcome from �i. They show

that no stable-dominating mechanism is obviously manipulable, which by Theorem 2 implies

the following.

Theorem 6. No essentially stable mechanism is obviously manipulable.

Given the restrictive nature of strategyproofness, real-world markets often make use of

non-strategyproof mechanisms, and many do so quite successfully. While this does not

mean that incentives should be ignored, Theorem 6 suggests that ESPE mechanisms may

provide a satisfying alternative in practice. Ultimately, the choice between stronger strategic

properties and greater efficiency is up to policy makers and more theoretical, experimental,

and empirical investigations are needed to inform this trade-off.

5 Conclusion

This paper introduces the concept of essential stability, a weakening of classical stability that

allows a matching to have some priority-based claims to seats at schools as long as those

claims are vacuous. The motivation for this definition is twofold. First, it is compatible with

Pareto efficiency, which can significantly improve the welfare of participants. Second, it still

adheres to the principle behind imposing stability as a fairness criterion in the first place:

students should not have valid claims. Indeed, essential stability makes evidently clear why

there is no reason for a student to claim a seat even if she desires it and has high priority.

The definition is simple enough that it can easily be explained to non-experts, which we

believe constitutes a key advantage for the purpose of practical implementation.
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Our paper opens several avenues for future research. First, the existence of multiple

ESPE matchings raises the question of whether some can be argued to be more desirable

than others. If these matchings could be compared in a meaningful way, it may be possible to

improve upon the EADA mechanism by selecting the “best” ESPE matching in each market.

Second, essential stability could constitute a useful concept beyond the model studied in this

paper; it could prove particularly valuable, for example, in settings where a stable matching

is not guaranteed to exist, such as one-sided matching markets or matching markets with

couples. While the right formal definition will likely depend on the particular setting, we

hope that the ideas in this paper provide inspiration for thinking about how to appropriately

define a fairness criterion that is not only compatible with efficiency, but is also intuitive and

convincing to policymakers and market participants.
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A Omitted proofs

In this appendix, we provide proofs of all results that were not proved in the main text.

We first present the proofs of Theorem 1, Proposition 1, and Theorem 4. The proofs of all

remaining lemmas (including those from the main text and those introduced in the proof of

Theorem 4) can be found in the next subsection.

Proof of Theorem 1. The existence of at least one ESPE mechanism follows directly

from Theorem 4 and the fact that the SEADA mechanism is Pareto efficient. The potential

multiplicity of ESPE matchings follows from the example below.

Let there be 4 students S = {i1, i2, i3, i4} and 4 schools C = {A,B,C,D}, each with

capacity 1. The priorities and preferences are given in the following tables.

�A �B �C �D
i3 i1 i2 i4

i1 i4 i3 i3

i2
...

...
...

...

Pi1 Pi2 Pi3 Pi4

A †A D B

†B C †C †D
...

... A
...

...

µ� and µ† are two essentially stable and Pareto efficient matchings. µ� is the DA match-

ing, which in this example happens to be Pareto efficient. µ† is not stable as i1 has a claim

to A. However, it is the only claim and the reassignment chain it initiates is

i1 → A→ i2 → C → i3 → A→ i1 → · · · ;

therefore the claim is vacuous and µ† is essentially stable. �

Proof of Proposition 1.

Let ν1, . . . , νN be a sequence of matchings, d1, . . . , dN−1 be a sequence of schools, and

∆̂1, . . . , ∆̂N−1 be a sequence of rotations such that,

• ν1 = µΓ̂ and for each n = 1, . . . , N − 1:

• dn is i’s most preferred school to which she has a claim at νn,

• ∆̂n is the rotation initiated by (i, dn) at νn,
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• νn+1 = ν∆̂n
n ,

• and i does not have any claim at νN .

By Lemmas 2 and 3 and the fact that the claim that starts a rotation disappears when

that rotation is carried out, N is finite and ν1, . . . , νN are essentially stable. Additionally,

by construction, µ(i) = ν1(i) = . . . = νN(i).

Consider the reassignment chain Γ and the rotation Γ̂ initiated by (i, c) at µ. Up to step

K̂, the two are identical. The rotation ends at step K̂, after which c rejects i and the latter is

assigned to µ(i), while the reassignment chain continues until some step K, where a student

is matched to a school with a free seat. Then, i is unassigned at µK̂+1 and, for all j 6= i,

µK̂+1(j) = µΓ̂(j) = ν1(j).

Suppose towards an inductive argument that for some n = 1, . . . , N − 1, there exists L̂n

such that i is unassigned at µL̂n+1 and, for all j 6= i, µL̂n+1(j) = νn(j). dn is i’s most preferred

school among those to which she has a claim at νn, by definition, as well as at µL̂n+1, by the

induction hypothesis. The next steps of Γ are then identical to ∆̂n, the rotation initiated by

(i, dn) at νn, until dn rejects i. Let that step be labeled L̂n+1; then i is unassigned at µL̂n+1+1

and, for all j 6= i, µL̂n+1+1(j) = νn+1(j).

By induction, there exists L̂N such that i is unassigned at µL̂N+1 and, for all j 6= i,

µL̂N+1(j) = νN(j). Since i does not have any claim at νn(j), her most preferred school

among those to which she has a claim at µL̂N+1 is µ(i). Since µ(i) has a free seat, i is

matched to it and Γ ends. �

Proof of Theorem 4.

Consider some arbitrary claim (i, c), and let Γ denote the reassignment chain initiated

by this claim.27 We will show that student i must be rejected from c at some point in Γ,

and hence the claim (i, c) is vacuous, and µR is essentially stable.28

We start with the following monotonicity lemma, part (i) of which is due to Kojima and

Manea (2010). To state it, say that a preference relation P ′i is a monotonic transformation

of Pi at c ∈ C if bR′ic =⇒ bRic. Preference profile P ′ is a monotonic transformation of P

at a matching µ if P ′i is a monotonic transformation of Pi at µ(i) for all i. In words, P ′ is

27If there are no claims, then the matching is classically stable, and so is also essentially stable trivially.
Also, µR is nonwasteful, and so any claim (i, c) must be because there exists some j ∈ µR(c) such that i �c j.

28In an earlier version of this paper, we also prove that every round r matching µr is essentially stable.
For simplicity, we focus on the most important one, µR, here.
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a monotonic transformation of another preference profile P at a matching µ if, for all i, the

ranking of µ(i) only increases in moving from Pi to P ′i .

Lemma 4. (i) If P ′ is a monotonic transformation of P at DA(P ), then DAi(P
′)R′iDAi(P )

for all students i ∈ S.

(ii) If P ′ is a monotonic transformation of P at DA(P ), then

DAi(P
′)RiDAi(P ) for all students i ∈ S.

Now, consider again the claim (i, c) at µR. Because DA on the round R submarket is

stable, only students who were removed in a round strictly earlier than R (the final round)

can have a claim. That is, i must have been removed in some round r̂ < R. Define an

alternative preference profile P r̂ as follows: for any student j removed before round r̂, P r̂
j

ranks her assignment µr̂(j) first, and the remaining schools in the same order as the true Pj;

for all j not removed before round r̂, P r̂
j = Pj. Note that this is a simple way to describe

preferences so that DA(P r̂) = µr̂.29

Define a second preference profile P̄j as follows: for each j 6= i, P̄j ranks µR(j) first, and

every other school is listed in the same order as the true Pj, while for student i, P̄i ranks c

first and the remaining schools in the order of the true Pi.

Lemma 5. Student i’s DA assignment at the end of round r̂ is the same as her DA as-

signment under P̄ , which is the same as her assignment at the end of round R: DAi(P̄ ) =

DAi(P
r̂) = µR(i).

The lemma is formally proved in the “Proofs of lemmas” subsection that follows the proof

of this theorem, but the main step is that P̄ is a monotonic transformation of P r̂ at DA(P r̂).

Now, it is well-known that the following is an alternative description of the DA mechanism

(McVitie and Wilson, 1971; Dubins and Freedman, 1981):

DA At each step t, arbitrarily choose one student among those who are currently unmatched,

and allow her to apply to her most preferred a school that has not yet rejected him.

All schools other than a tentatively hold the same students as the last step. School

a holds the highest-priority students up to their capacity among those held from last

step combined with the new applicant and reject the (at most one) other.

29Raising school µr̂(j) for all j removed prior to round r̂ to the top of her preferences is a way to effectively
“remove” student j from the market, because no student who has not been removed prior to round r̂ will
ever apply to such a school because it is underdemanded.
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In this new method, the choice of the applicant at each step is arbitrary, in the sense that

the order in which they are chosen does not affect the final outcome. So, for any fixed

preference profile, one way to find the DA outcome is to have i be the last student chosen to

enter the market. That is, as long as there is some other student besides i who is tentatively

unmatched, we always choose one of these students to make the next application. Once all of

these students have been (tentatively) assigned to a school, we allow i to enter by applying

to the first school on her preference list. Student i’s application then initiates a rejection

chain, where i applies to some school a, a rejects its lowest-priority student i1, i1 applies to

her most preferred school that has not yet rejected her, and so on, until we reach a school

aK with an empty seat, at which point the rejection chain (and the entire DA mechanism)

end, and all tentative matchings are made final.

Consider running DA on the preference profile P̄ in this manner where i enters the

market last. All students j other than i are tentatively matched to µR(j), and then i starts a

rejection chain which, as the next lemma proves, turns out be identical to the reassignment

chain Γ.

Lemma 6. The final matching at the end of Γ is DA(P̄ ).

By Lemma 6, the outcome of the reassignment chain Γ is the same as the outcome of

DA(P̄ ). By Lemma 5, DAi(P̄ ) = µR(i), and so i’s assignment at the end of Γ is also µR(i).

The only way this is possible is if i is rejected from c at some point in Γ; that is, the claim

(i, c) is vacuous. �

Proofs of lemmas

Proof of Lemma 1.

As the second part of the statement was proved in the main text, we focus on the first

part: µ(j)Pjµ
Γ̂(j) for all j appearing in Γ̂. For any matching µ̃ and any school e ∈ C, let

µ̃(e) be the lowest-priority student in µ̃(e).

Let j be a student who appears in Γ̂. That student is rejected by her original school µ(j)

at some point in this rotation; therefore she is not matched to it at the end of the rotation:

µΓ̂(µ(j)) �µ(j) j so µΓ̂(j) 6= µ(j). It remains to show that j does not prefer µΓ̂(j) to µ(j).

Let d = µΓ̂(j) and, towards a contradiction, suppose that dPjµ(j). As j ∈ µΓ̂(d) and d

appears in Γ̂, j �d µΓ̂(d) �d µ(d); therefore j has a claim to d at µ. That claim is vacuous
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since µ is essentially stable. Let

j = j0 → d = d0 → j1 → d1 → j2 → d2 → · · · → jL̂ → dL̂ → j

be the rotation initiated by (j, d) at µ, which we denote by ∆̂. Let ν` (` = 0, 1, . . . , L̂, L̂+ 1)

be the matching (or pseudo matching for ` = 1, . . . , L̂ since these leave a student unmatched)

obtained at step ` of ∆̂. Then, µ∆̂(h) = µL̂+1(h) for all h 6= j and µ∆̂(j) = µ(j).

For every school e ∈ C, we define φΓ̂(e) = µΓ̂(e) ∪ {h ∈ S : µΓ̂(e) �e h}. That is, φΓ̂(e)

contains the students matched to e at µΓ̂ and those who have a lower priority than all of

these students. Our argument proceeds by induction with the following hypothesis:

For some ` = 1, . . . , L̂ and for every school e ∈ C, ν`(e) ⊆ φΓ̂(e).

We begin by showing that our induction hypothesis is satisfied for ` = 1. Consider any

school e ∈ C and recall that ν0 = µ. All the students in µ(e) \ µΓ̂(e) are rejected by e along

Γ̂, which means that they have a lower priority than all students in µΓ̂(e). We conclude that

ν0(e) = µ(e) ⊆ φΓ̂(e). For all e /∈ {d, µ(j)}, ν0(e) = ν1(e) while ν1(µ(j)) = ν0(µ(j)) \ {j} ⊆
φΓ(e); therefore it remains to show that ν1(d) ⊆ φΓ̂(d). By construction, ν1(d) ⊂ ν0(d)∪{j}.
As j ∈ µΓ̂(d) ⊆ φΓ̂(d), ν1(d) ⊆ φΓ̂(d), as required.

We next suppose that our induction hypothesis is satisfied for some ` = 1, . . . , L̂ and

show that it is satisfied for ` + 1. For every e 6= d`, ν`(e) = ν`+1(e); therefore the induction

hypothesis directly implies that ν`+1(e) ⊆ φΓ̂(e). By construction, ν`+1(d`) ⊂ ν`(d`) ∪ {j`};
therefore it remains to show that j ∈ φΓ̂(d`).

We first show that j` (who is unmatched at ν`) has a claim to µΓ̂(j`) at ν`. This is trivially

the case if |ν`(µΓ̂(j`)| < qµΓ̂(j`). Otherwise, ν`(µΓ̂(j`)) is the qth
µΓ̂(j`)

highest-priority student in

ν`(µΓ̂(j`)). As ν`(µΓ̂(j`)) ⊆ φΓ̂(µΓ̂(j`)) by the induction hypothesis, she has a weakly lower

priority than the qth
µΓ̂(j`)

highest-priority student in φΓ̂(µΓ̂(j`)). By construction, that student

has a weakly lower priority than µΓ̂(µΓ̂(j`)); hence µΓ̂(µΓ̂(j`)) �µΓ̂(j`) ν
`(µΓ̂(j`)). Combining

this with the fact that j` ∈ µΓ̂(µΓ̂(j`)) \ ν`(µΓ̂(j`)), we conclude that j` �µΓ̂(j`) ν
`(µΓ̂(j`)) so

j` has a claim to µΓ̂(j`) at ν`.

We now conclude our inductive argument by showing that j ∈ φΓ̂(d`). By construction, d`

is j`’s most preferred school among those to which she has a claim at ν`; therefore d`Rj`µ
Γ̂(j`).

If d` = µΓ̂(j`), then j ∈ µΓ̂(d`) ⊆ φΓ̂(d`); therefore we focus on the case where d`Pj`µ
Γ̂(j`).

As j` is unassigned at ν`, µ(j`) has rejected her before step ` of ∆̂; hence |ν`(µ(j`))| = qµ(j`)

and ν`(µ(j`)) �µ(j`) j
`. By an analogous reasoning to the one above, |ν`(µ(j`))| = qµ(j`)
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combined with the induction hypothesis implies that µΓ̂(µ(j`)) �µ(j`) ν
`(µ(j`)); therefore

µΓ̂(µ(j`)) �µ(j`) j
`. In turn, this implies that µ(j`) 6= µΓ̂(j`) so j` is matched to µΓ̂(j`)

somewhere along Γ̂. At that point, µΓ̂(j`) is her most preferred school to which she has a

claim; therefore d` is matched to qd` students who all have a higher priority than her. As

schools get higher-priority students throughout a rotation, it follows that that µΓ̂(d`) �d` j`.
This in turns implies that j` ∈ φΓ̂(d`), which concludes our inductive argument.

It follows, by induction, that νL̂+1(d) ⊆ φΓ̂(d). As |νL̂+1(d)| = qd by construction,

this implies that µΓ̂(d) �d νL̂+1(d), again by a reasoning analogous to the one above. By

construction, d rejects j in step L̂ of ∆̂ so νL̂+1(d) �d j. It follows that µΓ̂(d) �d j, a

contradiction. �

Proof of Lemma 2.

We first show by contradiction that j does not appear in Γ̂. If she does, then there exists

k = 1, . . . , K̂ such that j = ik and µΓ̂(j) = ck. By definition, µΓ̂(j) is j’s most preferred

school among those to which she has a claim at µk and, by assumption, dPjµ
Γ̂(j); therefore

µk(d) contains qd students with a higher priority than j. As schools receive higher priority

student throughout a rotation, so does µΓ̂(d); consequently, j does not have a claim to d at

µΓ̂, a contradiction.

We have established that j does not appear in Γ̂, which implies that µΓ̂(j) = µ(j); hence

dPjµ(j). By assumption, µΓ̂(d) contains at most qd− 1 students with a higher priority than

j. By Corollary 1, µΓ̂(d) �d µ(d); therefore µ(d) also contains at most qd − 1 students with

a higher priority than j so j has a claim to d at µ. �

Proof of Lemma 3.

Consider a claim (j, d) at µΓ̂. We need to show that this claim is vacuous. By Lemma

2, (j, d) is a claim at µ and, as µ is essentially stable, it is vacuous. The remainder of the

proof follows a similar inductive argument to that of Lemma 1. Let

j = j0 → d = d0 → j1 → d1 → j2 → d2 → · · · → jL̂ → dL̂ → j

be the rotation initiated by (j, d) at µ, which we denote by ∆̂. Let ν` (` = 0, 1, . . . , L̂, L̂+ 1)

be the matching (or pseudo matching for ` = 1, . . . , L since these leave a student unmatched)

obtained at step ` of ∆̂. Then, µ∆̂(h) = µL̂+1(h) for all h 6= j and µ∆̂(j) = µ(j).

We denote by ∆∗ the rejection chain initiated by (j, d) at µΓ̂ and by µ∗ = µΓ̂,∆∗
the
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matching obtained after, starting from µ, the rotation Γ̂ and the reassignment chain ∆∗ are

successively carried out. For any matching µ̃ and and any school e ∈ C, let µ̃(e) be the

lowest-priority student in µ̃(e). and, for every school e ∈ C, we define φ∗(e) = µ∗(e) ∪ {h ∈
S : µ∗(e) �e h}. That is, φ∗(e) contains the students matched to e at µ∗ and those who have

a lower priority than all of these students.

Our proof is by induction and uses the following hypothesis:

For some ` = 1, . . . , L̂ and for every school e ∈ C, ν`(e) ⊆ φ∗(e).

We begin by showing that our induction hypothesis is satisfied for ` = 1. Consider any

school e ∈ C and recall that ν0 = µ. All the students in µ(e) \ µ∗(e) are rejected by e

along either Γ̂ or ∆∗, which means that they have a lower priority than the students in

µ∗(e). We conclude that ν0(e) = µ(e) ⊆ φ∗(e). For all e /∈ {d, µ(j)}, ν0(e) = ν1(e) while

ν1(µ(j)) = ν0(µ(j)) \ {j} ⊆ φΓ(e); therefore it remains to show that ν1(d) ⊆ φ∗(d). By

construction, ν1(d) ⊂ ν0(d) ∪ {j} and j is matched to d at the beginning of ∆∗; therefore

either j ∈ µ∗(d) or d rejects j somewhere along ∆∗, in which case µ∗(d) �d j. We conclude

that j ∈ φ∗(d), which implies that ν1(d) ⊆ φ∗(d).

We next suppose that our induction hypothesis is satisfied for some ` = 1, . . . , L̂ and

show that it is satisfied for ` + 1. For every e 6= d`, ν`(e) = ν`+1(e); therefore the induction

hypothesis directly implies that ν`+1(e) ⊆ φ∗(e). By construction, ν`+1(dt) ⊂ ν`(d`) ∪ {j`};
therefore it remains to show that j ∈ φ∗(d`).

We first show that j` (who is unmatched at ν`) has a claim to µ∗(j`) at ν`. This is trivially

the case if |ν`(µ∗(j`)| < qµ∗(j`). Otherwise, as ν`(µ∗(j`)) ⊆ φ∗(µ∗(j`)) by the induction

hypothesis, ν`(µ∗(j`)) has a weakly lower priority than the qth
µΓ̂(j`)

highest-priority student in

φ∗(µ∗(j`)). By construction, that student has a weakly lower priority than µ∗(µ∗(j`)); hence

µ∗(µ∗(j`)) �µ∗(j`) ν
`(µ∗(j`)). Combining this with the fact that j` ∈ µ∗(µ∗(j`)) \ ν`(µ∗(j`)),

we conclude that j` �µ∗(j`) ν
`(µ∗(j`)) so j` has a claim to µ∗(j`) at ν`.

We now conclude our inductive argument by showing that j ∈ φ∗(d`). By construction, d`

is j`’s most preferred school among those to which she has a claim at ν`; therefore d`Rj`µ
∗(j`).

If d` = µ∗(j`), then j ∈ µ∗(d`) ⊆ φ∗(d`); therefore we focus on the case where d`Pj`µ
∗(j`).

As j` is unassigned at ν`, µ(j`) has rejected her before step ` of ∆̂; hence |ν`(µ(j`))| = qµ(j`)

and ν`(µ(j`)) �µ(j`) j
`. By an analogous reasoning to the one above, |ν`(µ(j`))| = qµ(j`)

combined with the induction hypothesis implies that µ∗(µ(j`)) �µ(j`) ν
`(µ(j`)); therefore

µ∗(µ(j`)) �µ(j`) j
`. In turn, this implies that µ(j`) 6= µ∗(j`) so j` is matched to µ∗(j`)

somewhere along either Γ̂ or ∆∗. At that point, µ∗(j`) is her most preferred school to which
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she has a claim; therefore d` is matched to qd` students who all have a higher priority than

her. As schools get higher-priority students throughout a rotation and a reassignment chain,

it follows that that µ∗(d`) �d` j`. This in turns implies that j` ∈ φ∗(d`), which concludes

our inductive argument.

By induction, we conclude that νL̂+1(d) ⊆ φ∗(d). As |νL̂+1(d)| = qd by construction,

this implies that µ∗(d) �d νL̂+1(d), again by a reasoning analogous to the one above. By

construction, d rejects j in step L̂ of ∆̂ so νL̂+1(d) �d j. It follows that µ∗(d) �d j; therefore

d rejects j somewhere along ∆∗, which means that this reassignment chain returns to j;

hence j’s claim to d at µΓ̂ is vacuous. �

Proof of Lemma 4.

Part (i) is shown in Kojima and Manea (2010), and they refer to this property as weak

Maskin monotonicity. For part (ii), consider a student i, and let DAi(P ) = a and DAi(P
′) =

a′. By part (i), we have a′R′ia. Since P ′i is a monotonic transformation of Pi at a, a′R′ia

implies a′Ria. �

Proof of Lemma 5.

We start by showing that P̄ is a monotonic transformation of P r̂ at DA(P r̂). For each

j ∈ S, let DAj(P
r̂) = aj. For all j removed from the market at some round r < r̂,

µr(j) = µr̂(j) = aj. Thus, both P r̂
j and P̄j rank school aj first, and P̄j is trivially a

monotonic transformation of P r̂
j at aj for these students.

Next, consider the students who are still in the market at the beginning of round r̂, and

note that for all such students, P r̂
j = Pj. Consider some such j 6= i. By Lemma 2 of Tang

and Yu (2014), µR(j)Rjaj for all j. Since P r̂
j = Pj, this further implies that µR(j)Rr̂

jaj.

Now, consider preference profile P̄j. P̄j simply raises µR(j) to the top of the ordering,

without altering the relative rankings of any other seats (in particular, no schools “jump”

over student j’s round r̂ assignment aj in the move from P r̂
j to P̄j), and so P̄j is a monotonic

transformation of P r̂
j at aj for all j 6= i.

Last, consider student i. She is removed in round r̂, and so cP r̂
i ai (otherwise, student i

would not claim a seat at c at µR).30 By similar logic (no school a′ “jumps” over ai in going

from P r̂
i to P̄i), P̄i is a monotonic transformation of P r̂

i at ai. Thus, we have shown that P̄j

30Because i is removed in round r̂, we have µR(i) = µr̂(i) = ai; because she claims a seat at c at µR,
we have cPiµ

R(i); again because i is still in the market at round r̂, we have P r̂
i = Pi. This all implies that

cP r̂
i ai.
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is a monotonic transformation of P r̂
j at DAj(P

r̂) for all j ∈ S, and so preference profile P̄ is

a monotonic transformation of preference profile P r̂ at DA(P r̂).

Finally, given a matching µ, say student i is not Pareto improvable if, for every ν that

Pareto dominates µ, ν(i) = µ(i). Since P̄ is a monotonic transformation of P r̂ at DA(P r̂),

Lemma 4, part (ii) gives DAj(P̄ )Rr̂
jDAj(P

r̂) for all j ∈ S, i.e., the matching DA(P̄ ) Pareto

dominates the matching DA(P r̂) with respect to P r̂. Since i is removed in round r̂, she

must be matched with an underdemanded school at DA(P r̂) which, by Lemma 1 of Tang

and Yu (2014), implies that she is not Pareto improvable relative to P r̂. Since DA(P̄ )

Pareto dominates DA(P r̂) and i is not Pareto improvable, her matching does not change:

DAi(P̄ ) = DAi(P
r̂). Since i is removed at round r̂, her assignment at R > r̂ is the same as

her assignment at the end of round r̂: µR(i) = DAi(P
r̂). �

Proof of Lemma 6.

Run DA(P̄ ) with the alternative method by letting each student j 6= i make applications

in any arbitrary order. By construction of P̄ , each j applies to µR(j) and is tentatively

matched to µR(j). No rejections occur because each j 6= i is assigned to the unique seat to

which she is assigned at µR. Now, again by construction of P̄ , when i enters, she begins by

applying to c. We can index the rest of the steps of DA as a chain of rejections, which we

denote Ξ, where

Step Ξ(k) : “student ik applies to school ak which rejects student ik+1”.

This chain of rejections eventually terminates at some K when a student applies a school

with a vacant seat. When a student ik+1 is rejected, she goes to the next school on her list

and applies. It may be the case that when a student applies to a school, she is rejected

immediately, and must continue down her list. Formally, if ik 6= ik+1 we say step Ξ(k) is

effective. If a step is ineffective (ik = ik+1), then the same student who applied is also

the one rejected, and nothing would change if ik simply skipped her application to ak. Let

Ξ′ be an alternative rejection chain that deletes all of the ineffective steps of Ξ. Deleting

ineffective steps has no effect on the final outcome, and so the final matching at the end of

Ξ and Ξ′ is the same, and by construction, is DA(P̄ ).

The key now is that the steps of Ξ′ are the same as the steps of the reassignment chain Γ.

Recall from above that all students j 6= i are tentatively matched to the same school when i

enters under DA(P̄ ) as they are matched to when Γ begins (namely, school µR(j)). Consider
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step 1. In the former case, a student j is rejected from her initial school c = µR(j).31 The

rest of her preference list P̄j coincides with her true preferences Pj so she goes down her

true list Pj until she reaches a school where she has higher priority than some tentatively

matched student. This is the same as step 1 of the reassignment chain Γ. We now have a

new tentative matching for DA that is the same as the k = 1 matching for Γ, and the same

student i1 who is tentatively unassigned and will make the next application. Using the same

argument, the second step of Ξ′ leads to the same tentative matching as the k = 2 matching

under Γ and so on for each additional matching, until the same student iK applies to the

first school cK that has an empty seat, at which point both Γ and Ξ′ end at the same final

matching.32 �

B Comparison to other weakenings of stability

In this appendix, first we show formally that our definition of essential stability is distinct

from other approaches to weakening stability that have been proposed in the literature by

finding matchings that satisfy each of the other definitions but are strongly unstable under

our definition. Both Alcalde and Romero-Medina (2015) and Cantala and Pápai (2014)

show that the DA+TTC mechanism satisfies their respective definitions of stability, while

we showed in Section 4 that DA+TTC is not essentially stable. Therefore, the matching µ∗

from Example 1 is τ -fair, reasonably stable, and securely stable according to their respective

definitions, but is strongly unstable according to the definition used in this paper.

The definitions of Morrill (2016), Tang and Zhang (2016), and Ehlers and Morrill (2017)

are satisfied by the EADA mechanism and so it is less obvious that they are formally distinct.

However, as we show here, they are not equivalent.

We first consider Morrill (2016) (the same argument will apply to Ehlers and Morrill

31Since i is assumed to have a claim at c at µR (and µR is nonwasteful), we have i �c j, for some
j ∈ µR(c).

32Technically, the reassignment chain Γ goes back to the top of Pj every time j needs an assignment
while the rejection chain goes to the next school in P̄j , but they are equivalent here. This is because, as the
reassignment chain progresses, the lowest priority of all the students matched to any school only increases,
and so, even though j keeps going back to the top of the list in the reassignment chain, once j has been
rejected from a school, she will continue to be rejected, and it is equivalent for her to just start with the
next school down the list. Since all schools other than the top school under P̄j are in the same order as Pj ,
the next (effective) school that j applies to will be equivalent under both scenarios.
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(2017)), who introduces a new formal definition of fairness.33 In contrast to stability, which

is defined on a matching itself, fairness in Morrill (2016) is defined on a set of matchings; i.e.,

an individual matching µ cannot be deemed “fair” or “unfair” independently, but is only fair

in relation to other matchings. More formally, say that a matching µ blocks a matching ν

if there exists some i such that µ(i) = aPiν(i) and i �a j for some j ∈ ν(a). Given a set of

matchings M , a matching µ is possible for M if µ is not blocked by any ν ∈ M . Denote

the set of possible matchings for a set M by π(M). Then, a set of matchings F is fair if

1. For all µ ∈ F , µ is not blocked by any ν ∈ F ∪ π(F )

2. For all µ /∈ F , µ is blocked by some ν ∈ π(F ).

Example 1 can be used to show that essential stability is different from fairness as defined

in Morrill (2016) (and, by extension, from the analogous definitions of Ehlers and Morrill

(2017) and Tang and Zhang (2016)). More precisely, we exhibit a matching µ that must be

included in any fair set of matchings F , but is not essentially stable. To shorten notation,

we refer to a matching by a string of letters representing the school assigned to each student

in order of their indices. For example, µ = ABCDE means that i1 is assigned to A, i2 to B,

i3 to C, and so forth.

Proposition 4. Let F be a fair set of matchings, and let µ = BACDE. Then, µ ∈ F , but

µ is not essentially stable.

Proof. Showing µ is not essentially stable is simple. Note that i3 claims the seat at school

B, and the reassignment chain that follows is (i3 → B → i1 → A → i2 → C). Since this

does not return to i3, the claim (i3, B) is non-vacuous and so µ is not essentially stable.

Next, we show that if F is a fair set of matchings, then µ ∈ F . Let π(F ) be the set of

possible matchings for F . First, note that the DA outcome is µDA = ABCDE, and µDA ∈ F
for any F (because it is not blocked by anything). Next, observe that each student i has

the highest priority at her DA school. So, i can use the DA matching to block any other

matching ν that gives her a school she disprefers to her DA school. This implies that for all

ν ∈ π(F ), ν Pareto dominates µDA.34

33Morrill (2016) additionally introduces the notion of a legal set of assignments that is defined slightly
differently from the fair set. While the result below is stated in terms of fairness, Morrill (2016) shows that
the fair set of assignments is equivalent to the legal set of assignments, and so the result applies to both the
fair set and the legal set.

34If ν does not Pareto dominate µDA, then there is some i such that µDA(i)Piν(i). Then, ν is not possible
for F , because i would block ν using µDA, which is always included in any F .
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Now, assume that µ = BACDE /∈ F . By part (2) of the definition of fairness, there

exists some ν ∈ π(F ) that blocks it. The only potential student who can block µ is i3,

who can block with B. Let ν be some ν ∈ π(F ) at which ν(i3) = B. Since ν must Pareto

dominate µDA, there is only one possibility: ν = ACBDE.35 Thus, ν = ACBDE ∈ π(F ).

Since ν ∈ π(F ), there is no ρ ∈ F that blocks it. Since ν can be blocked by any matching ρ

such that ρ(i4) = C, we have ρ(i4) = C implies that ρ /∈ F ; in particular, ρ = ABDCE /∈ F .

Since ρ /∈ F , there must be some σ ∈ π(F ) that blocks ρ. The only student who can

block ρ is i5, who can block with any σ such that σ(i5) = D. However, any such σ has some

student who is assigned to a school worse than her DA assignment,36 which contradicts that

every σ ∈ π(F ) Pareto dominates µDA. �

The above proposition shows that our definition is not equivalent to that of Morrill (2016),

and, by extension, Ehlers and Morrill (2017). As far as the definition of weak stability from

Tang and Zhang (2016), a result of Morrill (2016) shows that the set of fair matchings F is

equivalent to the vNM stable set. Tang and Zhang (2016) show that every matching that

is in the vNM stable set is weakly stable in their sense. Thus, the same matching µ from

the above proposition is weakly stable in the sense of Tang and Zhang (2016), but is not

essentially stable.

C Semilattice

As mentioned in the main text, the existence of a minimal element may intuitively suggest

that the set of essentially stable matchings forms a semilattice. We show in this appendix that

this is in fact not the case. The set of essentially stable matchings forms a meet-semilattice

with respect to the partial ordering R if for any two essentially stable matchings µ1 and µ2,

there exists a greatest lower bound (also called infimum or meet) µ such that (i) µ is an

essentially stable matching, (ii) µ1Rµ, µ2Rµ, and (iii) for any essentially stable matching µ:

µ1Rµ and µ2Rµ imply µRµ.

Proposition 5. The set of essentially stable matchings may not form a meet-semilattice

with respect to the partial ordering R.

35Since ν must Pareto dominate µDA, i1 must get A (because i3 is assigned B). Then, since A and B are
taken, ν(i2) = C, which further implies that ν(i4) = D. The only school left is E, and so ν(i5) = E.

36For each student i1, i2, i3, and i4, the schools weakly preferred to her DA assignment are some subset
of {A,B,C}. Since there are only 3 seats at these schools and 4 students, some student must be assigned to
a school worse than her DA assignment.
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Proof. The proof is by counterexample, which we present below.

Example 2. Let there be 7 students S = {i1, i2, i3, i4, i5, i6, i7} and 7 schools C = {A,B,C,D,E, F,G},
each with capacity 1. The priorities and preferences are given in the following tables.

�A �B �C �D �E �F �G Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7

i7 i1 i2 i6 i4 i5 i3 A B C D E F G

i5 i2 i3 i3 i5 i6 i7 D C A E A D A

i3
...

... i4
...

...
... B

... D
... F

...
...

i1 i1
... G

...
...

...
...

The following matchings are essentially stable:37

µ1 =

(
A B C D E F G

i3 i1 i2 i4 i5 i6 i7

)
µ2 =

(
A B C D E F G

i5 i2 i3 i1 i4 i6 i7

)

µ3 =

(
A B C D E F G

i5 i1 i2 i3 i4 i6 i7

)
µ4 =

(
A B C D E F G

i3 i1 i2 i6 i4 i5 i7

)

It is easy to verify that µ1 and µ3 are stable. At µ2, the only claim is i4’s claim to D. The

reassignment chain initiated by that claim is

i4 → D → i1 → B → i2 → C → i3 → D → i4 → · · · ;

therefore the claim is vacuous and µ2 is essentially stable. At µ4, i5’s claim to A is the only

one. The reassignment chain it initiates is

i5 → A→ i3 → G→ i7 → A→ i5 → · · · ;

therefore the claim is vacuous and µ4 is essentially stable.

It is easy to verify that neither one of µ1 and µ2 Pareto dominates the other and that

the same holds for µ3 and µ4; however, µ1 and µ2 both Pareto dominate µ3 as well as µ4.

To conclude the proof, suppose towards a contradiction that the set of essentially stable

37There are also a student-optimal (essentially) stable matching that assigns each student to her favorite
school and a student-pessimal (essentially) stable matching that assigns to each school the student with the
top priority.
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matchings forms a meet-semilattice with respect to the partial ordering R. Then, µ1 and µ2

have a greatest lower bound µ. By definition, µ1Rµ, µ2Rµ, µRµ3, and µRµ4; therefore

A = µ1(i3)Ri3µ(i3)Ri3µ4(i3) = A and A = µ2(i5)Ri5µ(i5)Ri5µ3(i5) = A.

It follows that µ(i3) = µ(i5) = A, a contradiction since each school has capacity 1. �

D Robust Essential Stability

A possible concern is that vacuous claims are implemented within a reassignment chain.

If we argue that vacuous claims are not as serious as non-vacuous one, then perhaps they

should be discarded when constructing reassignment chains. In this appendix, we show that

this does not affect our results.

Definition 3. The robust reassignment chain initiated by claim (i, c) at matching µ

is the list

i0 → c0 → i1 → c1 → · · · → iK → cK

where,

• i0 = i, µ0 = µ, c0 = c and for each k ≥ 1:

• ik is the lowest-priority student in µk−1(ck−1),

• µk is defined as: µk(j) = µk−1(j), for all j 6= ik−1, ik, µk(ik−1) = ck−1, and student ik is

unassigned,

• ck is student ik’s most preferred school for which she has a non-vacuous claim at µk,

• and terminates at the first K such that |µK(cK)| < qcK .

A robust reassignment chain is identical to a reassignment chain except for one difference:

at any step k, student ik is matched to the school she prefers among those to which she

has a non-vacuous claim. We say that i’s claim to c is robustly vacuous if the robust

reassignment chain it initiates returns to i and that µ is robustly essentially stable if all

claims at µ are robustly vacuous. To show that the possible presence of vacuous counter-

claims does not affect any of our results, we prove the following equivalence:

Proposition 6. A matching is robustly essentially stable if and only it is essentially stable.
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Proof. Let

i0 = i→ c0 = c→ i1 → c1 → · · · → iK → cK

be the robust reassignment chain initiated by (i, c) at µ and for every k = 0, 1, . . . , K,K + 1

and let µk be the matching (or pseudo matching for k = 1, . . . , K since these leave a student

unmatched) considered at step k of that chain. We denote that chain by Γ and the matching

obtained once that chain is carried out by µΓ = µK+1. We denote the reassignment chain

initiated by (i, c) at µ by Γ and the matching obtained when this chain is carried out by µΓ.

For any matching µ̃ and any school e ∈ C, let µ̃(e) be the lowest-priority student in µ̃(e).

Finally, we define, for every school e ∈ C, φΓ(e) = µΓ(e) ∪ {h ∈ S : µΓ(e) �e h} to be the

set of students who either are matched to e at µΓ or have a lower priority than all students

matched to e at µΓ. We make use of the following result, which we prove below. (The proof

follows an inductive argument similar to those of Lemmas 1 and 3.)

Lemma 7. For all e ∈ C, µΓ(e) ⊆ φΓ(e) and, for all h ∈ S, µΓ(h)Rhµ
Γ(h).

(RES ⇒ ES) Suppose towards a contradiction that (i, c) is robustly vacuous but not

vacuous at µ. On the one hand, (i, c) is robustly vacuous; therefore c rejects i somewhere

along Γ and µΓ(c) contains qc students with a higher priority than i. By Lemma 7, µΓ(c) ⊆
φΓ(c) so φΓ(c) contains at least qc students with a higher priority than i. On the other hand,

(i, c) is not vacuous so i ∈ µΓ(c), which means that φΓ(c) contains at most qc − 1 students

with a higher priority than i, a contradiction. We conclude that every robustly vacuous

claim is vacuous, which directly implies that every robustly essentially stable matching is

essentially stable.

(ES⇒ RES) Suppose that µ is essentially stable. Then, Γ ends with i matched to µ(i) by

Proposition 1. Consider iK and cK , the last student and school to appear in Γ. If iK = i, she

appears in Γ. Otherwise, by construction, µ(i) rejects iK somewhere along Γ. This means

that µ(iK) is matched at µΓ to qµ(iK) students with a higher priority than iK . By Lemma 7,

φΓ(µ(iK)) contains qµ(iK) students with a higher priority than iK . In turn, this implies that

µΓ(µ(iK)) �µ(iK) i
K so µ(iK) rejects iK somewhere along Γ, which means that iK appears

in Γ. By assumption, cK has a free seat at µK so either cK = µ(i) or |µ(cK)| < qcK . In

either case, cK has a free seat the last time iK appears in Γ; therefore µΓ(iK)RiKc
K . By

Lemma 7, cK = µΓ(iK)RiKµ
Γ(iK); therefore µΓ(iK) = cK . Since cK has a free seat, Γ ends

when iK is matched to cK ; therefore iK = i and cK = c. This means that Γ returns to i and

(i, c) is robustly vacuous at µ. The same reasoning is valid for all claims at µ; therefore that

matching is robustly essentially stable. �
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Proof of Lemma 7.

We first show that µ1(e) ⊆ φΓ(e) for all e ∈ C. For every e, µ(e) ⊆ φΓ(e) since schools

only receive higher priority students throughout a reassignment chain. For all e /∈ {c, µ(i)},
µ1(e) = µ(e) ⊆ φΓ(e) while µ1(µ(i)) = µ(µ(i)) \ {i} ⊆ φΓ(e). Finally, µ1(c) ⊆ µ(c) ∪ {i}
and, therefore, it remains to show that i ∈ φΓ(c). If (i, c) is not vacuous at µ, i ∈ µΓ(c) so

i ∈ φΓ(c). If (i, c) is vacuous, c rejects i somewhere along Γ so all students in µΓ(c) have a

higher priority than i and i ∈ φΓ(c).

We next proceed with the following induction hypothesis:

For some k = 1, . . . , K and for every school e ∈ C, µk(e) ⊆ φΓ(e).

We show that µk+1(e) ⊆ φΓ(e). This holds trivially for all e 6= ck since µk+1(e) = µk(e).

In addition, µk+1(ck) ⊆ µk(ck) ∪ {ik}; therefore, it remains to show that ik ∈ φΓ(ck). The

following result is proved separately (again, the proof makes use of an inductive argument).

Lemma 8. ik has a non-vacuous claim to µΓ(ik) at µk.

As ck is by definition ik’s most preferred school to which she has a non-vacuous claim

at µk, Lemma 8 implies ckRik c̃ = µΓ(ik). If ck = c̃, then ik ∈ µΓ(ck) ⊆ φΓ(ck). If ckPik c̃,

then ik does not have a claim to ck the last time she appears in Γ. Since schools only get

higher–priority students throughout a reassignment chain, this means that µΓ(ck) contains

qck students who all have a higher priority than ik. Therefore, µΓ(ck) �ck ik so ik ∈ φΓ(ck),

which concludes the proof of the first part of the statement.

We next turn to the second part of the statement, considering any student h ∈ S. By

Lemma 1, µ(h)Rhµ
Γ(h). Each time she appears in Γ (if any), by Lemma 8, h has a non-

vacuous claim to µΓ(h). Therefore, she remains matched to a school she weakly prefer to

µΓ(h) throughout Γ, which means that µΓ(h)Rhµ
Γ(h). �

Proof of Lemma 8.

For ease of notation, let c̃ = µΓ(ik). We first show that ik has a claim to c̃ at µk. This is

trivially the case if |µk(c̃)| < qc̃. Otherwise, the facts that ik ∈ µΓ(c̃)\µk(c̃) and µk(c̃) ⊆ φΓ(c̃)

imply that ik �c̃ µk(c̃).
We next show that ik’s claim to c̃ at µk is not vacuous. Let

j0 = ik → d0 = c̃→ j1 → d1 → · · · → jL → dL
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be the reassignment chain initiated by (ik, ck) at µk, which we denote by ∆. Let µ∆ be the

matching obtained after, starting from µk, this reassignment chain is carried out and, for all

` = 0, 1, . . . , L, L+ 1, let ν` denote the matching (or pseudo matching for ` = 1, . . . , L since

these leave a student unmatched) obtained at step `.

By assumption, ν0(e) = µk(e) ⊆ φΓ(e) for all e ∈ C. We next proceed with the following

induction hypothesis:

For some ` = 0, 1, . . . , L and for every school e ∈ C, ν`(e) ⊆ φΓ(e).

As ν`(e) = ν`+1(e) for all e 6= d` and ν`+1(d`) ⊆ ν`(d`) ∪ {j`}, it is sufficient to show that

j` ∈ φΓ(d`). By a reasoning analogous to the one above, j` has a claim to d` at ν`; therefore

d`Rj`µ
Γ(j`). If d` = µΓ(j`), then j` ∈ µΓ(d`) ⊆ φΓ(d`). If d`Pj`µ

Γ(j`), then j` would not

have been matched to µΓ(j`) the last time she appeared in Γ unless µΓ(d`) �d` j`. Therefore,

j` ∈ φΓ(d`). We conclude that µ∆(e) ⊆ φΓ(e) for all e ∈ C.

Towards a contradiction, suppose that ik’s claim to c̃ at µk is vacuous. Then, c̃ rejects

ik somewhere along ∆ so µ∆(c̃) contains qc̃ students with a higher priority than c̃. Since

ik ∈ µΓ(c̃), this contradicts the fact that µ∆(c̃) ⊆ φΓ(c̃). �
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