KAZHDAN GROUPS WHOSE FC-RADICAL IS NOT VIRTUALLY ABELIAN

MIKHAIL ERSHOV

Abstract. We construct examples of residually finite groups with Kazhdan’s property (T) whose FC-radical is not virtually abelian. This answers a question of Popa and Vaes about possible fundamental groups of II₁ factors arising from Kazhdan groups.

1. Introduction

If G is a group, the FC-radical of G, denoted by FC(G), is the set of all elements of G which centralize a finite index subgroup of G. Equivalently, FC(G) is the set of all elements of G with finite conjugacy class.

In [4] Popa and Vaes asked the following question:

Question 1.1. Does there exist a residually finite (discrete) group with Kazhdan’s property (T) whose FC-radical is not virtually abelian?

This question was motivated by [4, Theorem 6.4(b)], which asserts that any group satisfying these conditions admits a free ergodic profinite action whose associated II₁ factor has all positive real numbers in its fundamental group. No Kazhdan group with the latter property was previously known.

In this short note we give a positive answer to Question 1.1 using Golod-Shafarevich groups.

We shall prove the following theorem:

Theorem 1.2. Every Golod-Shafarevich group has a residually finite quotient whose FC-radical is not virtually abelian.

In [2] it was shown that there exist Golod-Shafarevich groups with property (T). Since property (T) is preserved by quotients, applying Theorem 1.2 to any Golod-Shafarevich group with (T), we obtain a group which settles Question 1.1.

Acknowledgments. I am grateful to Mark Sapir for telling me about Question 1.1.

2. Construction

Informally speaking, a finitely generated group G is Golod-Shafarevich if it has a presentation with a “small” set of relators, where relators are counted with suitable weights. The formal definition is given below.

Definition. Let G be a finitely generated group. Given a prime p let $F_p[G]$ be the F_p-group algebra of G and I the augmentation ideal of $F_p[G]$. Let $\{\omega_n G\}_{n \geq 1}$ be the Zassenhaus
Let p-filtration of G defined by $\omega_n G = \{g \in G : g - 1 \in I^n\}$. For each $g \in G \setminus \bigcap_{n \in \mathbb{N}} \omega_n G$ we put $\deg_p (g)$ to be the largest n such that $g \in \omega_n G$.

We will need the following well-known properties of the Zassenhaus filtrations. They have been originally established by Jennings [3]; see also [1, Ch.11.12]:

(A) The subgroups $\{\omega_n G\}$ are of finite index in G. Moreover, they form a base for the pro-p topology on G, and thus $\bigcap_{n \in \mathbb{N}} \omega_n G$ is the kernel of the natural map from G to its pro-p completion \hat{G}_p. In particular, if G is residually-p, then $\bigcap_{n \in \mathbb{N}} \omega_n G = \{1\}$, so $\deg_p (g)$ is defined for any $g \in G \setminus \{1\}$.

(B) $\omega_n G = \prod_{p^j \geq n} (\gamma_j G)^{p^j}$ where $\gamma_j G$ is the jth term of the lower central series of G and H^m is the subgroup generated by mth powers of a group H. Therefore, if $\varphi : G \to K$ is a group homomorphism, then $\omega_n (\varphi (G)) = \varphi (\omega_n G)$.

Definition. Fix a prime number p.

(a) A group presentation $\langle X | R \rangle$, with X finite, is said to satisfy the Golod-Shafarevich (GS) condition (with respect to p), if there is a real number $t \in (0, 1)$ such that

$$1 - H_X (t) + H_R (t) < 0$$

where $H_X (t) = |X| t$ and $H_R (t) = \sum_{r \in R} t^{\deg_p (r)}$.

(b) A group G is called Golod-Shafarevich if it has a presentation satisfying the Golod-Shafarevich condition.

Any Golod-Shafarevich group G is infinite. In fact, its pro-p completion \hat{G}_p must be infinite and moreover satisfies a number of largeness properties (see, e.g., [6], [2] and references therein for precise statements). We shall only use a very weak statement about Golod-Shafarevich groups:

Proposition 2.1. If a group G is Golod-Shafarevich with respect to p, then its pro-p completion \hat{G}_p is not virtually abelian.

Proposition 2.1 follows, for instance, from a theorem of Wilson [5] which asserts that every Golod-Shafarevich group has an infinite torsion quotient.

Proof of Theorem 1.2. Let G be a Golod-Shafarevich group, so that G has a presentation $\langle X | R \rangle$ with $1 - H_X (t) + H_R (t) < 0$ for some $t \in (0, 1)$, and let $\varepsilon = -(1 - H_X (t) + H_R (t))$.

Let $k_0 \in \mathbb{N}$ be such that $t^{k_0} < \frac{\varepsilon}{8}$. By Proposition 2.1 we can choose $x_1, y_1 \in \omega_{k_0} G$ whose images in \hat{G}_p do not commute. Then there exists $k_1 > k_0$ such that x_1 and y_1 do not commute modulo $\omega_{k_1} G$. By making k_1 larger we can also assume that $t^{k_1} < \frac{\varepsilon}{8}$.

Let S_1 be a finite generating set for $\omega_{k_1} G$, let $R_1 = \{[x_1, s], [y_1, s] : s \in S_1\}$ and $G_1 = G/\langle R_1 \rangle$. Note that if \tilde{x}_1 and \tilde{y}_1 are the images of x_1 and y_1 in G_1, then

(i) By property (B) above we have $G/\omega_{k_1} G \cong G_1/(\omega_{k_1} G/\langle R_1 \rangle G) = G_1/\omega_{k_1} G_1$, so \tilde{x}_1 and \tilde{y}_1 do not commute modulo $\omega_{k_1} G_1$;

(ii) \tilde{x}_1 and \tilde{y}_1 lie in the FC-radical of G_1 (and the same is true for any quotient of G_1).

The group G_1 need not be Golod-Shafarevich, but it surjects onto the group $\hat{G}_1 = G_1/\langle x_1, y_1 \rangle G_1$ which is Golod-Shafarevich by construction.

Thus, the pro-p completion of G_1 is not virtually abelian, so we can find elements $x_2, y_2 \in \omega_{k_1} G$ and $k_2 > k_1$ such that the images of x_2 and y_2 in G_1 do not commute modulo $\omega_{k_2} G_1$ and $t^{k_2} < \frac{\varepsilon}{32}$.

Let S_2 be a finite generating set for $\omega_{k_2}G$, let $R_2 = \{[x_2, s], [y_2, s] : s \in S_2\}$ and $G_2 = G/(R_1 \cup R_2)/G$. By construction we have $G_1/\omega_{k_2}G_1 \cong G_2/\omega_{k_2}G_2$, the images of x_2 and y_2 in G_2 lie in the FC-radical of G_2, and G_2 surjects onto a Golod-Shafarevich group.

Continuing this process indefinitely we obtain a sequence of groups $G = G_0 \to G_1 \to G_2 \to \ldots$, elements $(x_i, y_i)_{i \in \mathbb{N}}$ of G and integers $k_0 < k_1 < k_2 < \ldots$ s.t.

(i) G_{i+1} is a quotient of G_i for all i.
(ii) G_i surjects onto the group $G/\langle \bigcup_{j=1}^i \{x_j, y_j\}\rangle^G$.
(iii) x_i and y_i lie in $\omega_{k_{i-1}}G$, and $t^{k_i-1} < \frac{x_i}{y_i}$
(iv) The images of x_i and y_i in $G_{i-1}/\omega_{k_i}G_{i-1}$ do not commute.
(v) $G_{i-1}/\omega_{k_i}G_{i-1} \cong G_j/\omega_{k_j}G_j$ for all $j \geq i$.
(vi) The images of x_i and y_i in G_i lie in the FC-radical of G_i.

Now let G_∞ be the inductive limit of $\{G_i\}$; in other words, if $G_i = G/N_i$, we let $N_\infty = \bigcup_{i \in \mathbb{N}} N_i$ and $G_\infty = G/N_\infty$. Let Q be the image of G_∞ in its pro-p completion, that is, $Q = G_\infty/\bigcap_{n \in \mathbb{N}} \omega_n G_\infty$.

Condition (ii) implies that G_∞ surjects onto the group $G/\langle \bigcup_{j=1}^\infty \{x_j, y_j\}\rangle^G$ which is Golod-Shafarevich by (iii). Thus, by Proposition 2.1 the group Q is infinite. Since Q is a subset of $(G_\infty)_p$, it is also residually finite.

Let $\pi : G \to Q$ be the natural projection. By condition (vi) the FC-radical of Q contains the subgroup H generated by the elements $\{\pi(x_i), \pi(y_i)\}_{i \in \mathbb{N}}$. It remains to show that H is not virtually abelian. Suppose not, so H contains a finite index abelian subgroup A. Then there exists integers $i < j$ such that $\pi(x_i x_j^{-1}) \in A$ and $\pi(y_i y_j^{-1}) \in A$. Conditions (iv) and (v) imply that $\pi(x_i)$ and $\pi(y_i)$ do not commute modulo $\omega_{k_i}Q$. Thus, if φ_i is the projection map $Q \to Q/\omega_{k_i}Q$, then $\varphi_i(\pi([x_i, y_i])) \neq 1$. On the other hand, by construction $x_j, y_j \in \omega_{k_j}G$, so $\varphi_i(\pi(x_j)) = \varphi_i(\pi(y_j)) = 1$. Therefore,

$$\varphi_i(\pi([x_i, y_i])) = \varphi_i(\pi([x_i x_j^{-1}, y_i y_j^{-1}])) \in \varphi_i([A, A]) = \{1\}.$$

The obtained contradiction shows that the FC-radical of Q is not virtually abelian, which finishes the proof.

\[\square\]

\textbf{References}

\textbf{University of Virginia, Department of Mathematics, P.O.Box 400137, Charlottesville, VA 22904}

\textit{E-mail address: ershov@virginia.edu}