THE IMAGES OF NON-COMMUTATIVE POLYNOMIALS EVALUATED ON MATRICES.

LOUIS ROWEN, DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY
RAMAT-GAN

Colloquium,
University of Va
Joint work with Alexei Kanel-Belov, Sergey Malev
8 October, 2015

We survey results about the evaluations of a polynomial p in several non-commuting variables taken in a central simple algebra A over an infinite center F. It is well known that when p is multilinear, the space generated by the image $p(A)$ of p is either:

- zero,
- F,
- the set $sl(A)$ of matrices of reduced trace 0,
- all of A.

Conjecture (attributed to Kaplansky, for $A = M_n(F)$): For any n, the same answer holds for $p(A)$ itself. This question turns out to be considerably more difficult, and decisive results are known only for low values of n (especially $n = 2$ and $n = 3$). More recently, interest has turned to Lie polynomials on sl_n, but here such basic questions as the degree of a minimal Lie identity remain open. We shall discuss the relation between regular associative polynomials and Lie polynomials.