26. Direct and inverse limits

Definition. A poset A is called a directed set if for any $\alpha, \beta \in A$ there exists $\gamma \in A$ s.t. $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Definition. Let \mathcal{C} be a category. A direct system in \mathcal{C} consists of a directed set A, a collection of objects $\{X_\alpha\}_{\alpha \in A}$ of \mathcal{C} and morphisms $\iota_{\alpha \beta} : X_\alpha \to X_\beta$ for any $\alpha \leq \beta$ s.t.

(i) $\iota_{\alpha \alpha} = id_{X_\alpha}$ for all $\alpha \in A$

(ii) $\iota_{\beta \gamma} \circ \iota_{\alpha \beta} = \iota_{\alpha \gamma}$ whenever $\alpha \leq \beta \leq \gamma$.

Remark: The notions of a direct system and inverse system (defined below) make sense even if the poset A is not assumed to be directed. However many important results only hold when A is directed.

Definition. Let \mathcal{C} be a category and $(A, \{X_\alpha\}, \{\iota_{\alpha \beta}\})$ a direct system in \mathcal{C}. An object $X \in Ob(\mathcal{C})$ is called a direct limit of this system if there exist morphisms $\iota_\alpha : X_\alpha \to X$ for $\alpha \in A$ with the following property:

(i) For any $\alpha \leq \beta$ the following diagram commutes:

\[
\begin{array}{ccc}
X_\alpha & \xrightarrow{\iota_\alpha} & X \\
\downarrow_{\iota_{\alpha \beta}} & & \downarrow_{\iota_\beta} \\
X_\beta & \xrightarrow{\iota_\beta} & X
\end{array}
\]

(ii) Given any $Y \in Ob(\mathcal{C})$ and morphisms $\varphi_\alpha : X_\alpha \to Y$ s.t. the diagram

\[
\begin{array}{ccc}
X_\alpha & \xrightarrow{\iota_\alpha} & Y \\
\downarrow_{\iota_{\alpha \beta}} & & \downarrow_{\varphi_\beta} \\
X_\beta & \xrightarrow{\varphi_\beta} & X
\end{array}
\]

commutes for $\alpha \leq \beta$, there exists unique morphism $\varphi : X \to Y$ s.t. the following diagram commutes for all $\alpha \in A$:

\[
\begin{array}{ccc}
Y & \xrightarrow{\varphi} & X \\
\downarrow_{\varphi_\alpha} & & \downarrow_{\iota_\alpha} \\
X & \xrightarrow{\iota_\alpha} & X
\end{array}
\]

If a direct limit exists, it is unique up to \mathcal{C}-isomorphism and is denoted by $\varinjlim X_\alpha$. 1
Examples: 1. Let \mathcal{C} be the category of sets. The simplest example of a direct system in \mathcal{C} is a collection $\{X_\alpha\}$ of subsets of the same set Y which form a chain, where the maps $\iota_{\alpha\beta}$ are natural inclusions. In this case $\lim\limits_{\to} X_\alpha = \bigcup X_\alpha$. The same holds in the categories of groups, abelian groups, rings etc.

2. Let \mathcal{C} be the category of sets and $(A, \{X_\alpha\}, \{\iota_{\alpha\beta}\})$ an arbitrary direct system in \mathcal{C}. Define the relation \sim on $\bigsqcup X_\alpha$ as follows: if $x \in X_\alpha$ and $y \in X_\beta$, then $x \sim y$ if there exists $k \in A$ s.t. $\iota_{\alpha\gamma}(x) = \iota_{\beta\gamma}(y)$ (here we identify each X_α with its image in $\bigsqcup X_\alpha$). Then \sim is an equivalence relation (because A is a directed set), and one can show that $\lim\limits_{\to} X_\alpha = \bigsqcup X_\alpha / \sim$.

Remark: If A is not assumed to be directed, it is still true that $\lim\limits_{\to} X_\alpha = \bigsqcup X_\alpha / \sim$ for certain equivalence relation, but the definition of \sim is less explicit: one defines \sim to be the smallest equivalent relation for which $x \sim \iota_{\alpha\beta}(x)$ for any $\alpha \leq \beta$ and $x \in X_\alpha$.

3. Let \mathcal{C} be the category of abelian groups and $(A, \{X_\alpha\}, \{\iota_{\alpha\beta}\})$ an arbitrary direct system in \mathcal{C}. Then $\lim\limits_{\to} X_\alpha = \oplus X_\alpha / I$ where I is the subgroup of $\oplus X_\alpha$ generated by the set

$$\{\iota_{\alpha\beta}(x) - x \text{ where } \alpha \leq \beta, \ x \in X_\alpha\}.$$

Here we do not need to assume that A is directed.

26.2. Inverse limits.

Definition. Let \mathcal{C} be a category. An inverse system in \mathcal{C} consists of a directed set A, a collection of objects $\{X_\alpha\}_{\alpha \in A}$ of \mathcal{C} and morphisms $\pi_{\beta\alpha} : X_\beta \to X_\alpha$ for any $\alpha \leq \beta$ s.t.

(i) $\pi_{\alpha\alpha} = id_{X_\alpha}$ for all $\alpha \in A$

(ii) $\pi_{\beta\alpha} \circ \pi_{\gamma\beta} = \pi_{\gamma\alpha}$ whenever $\alpha \leq \beta \leq \gamma$.

Definition. Let \mathcal{C} be a category and $(A, \{X_\alpha\}, \{\pi_{\beta\alpha}\})$ an inverse system in \mathcal{C}. An object $X \in Ob(\mathcal{C})$ is called an inverse limit of this system if there exist morphisms $\pi_\alpha : X \to X_\alpha$ for $\alpha \in A$ with the following property:

(i) For any $\alpha \leq \beta$ the following diagram commutes:

$$\begin{align*}
X & \xrightarrow{\pi_\beta} X_\beta \\
\pi_{\beta\alpha} & \downarrow \pi_\alpha \\
X_\beta & \xrightarrow{\pi_\beta} X_\alpha
\end{align*}$$
(ii) Given any $Y \in \text{Ob}(\mathcal{C})$ and morphisms $\varphi_\alpha : Y \to X_\alpha$ s.t. the diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{\varphi_\alpha} & X_eta \\
\downarrow{\pi_\beta} & & \downarrow{\pi_\alpha} \\
X_\beta & \xrightarrow{\varphi_\beta} & X_\alpha \\
\end{array}
$$

commutes for $\alpha \leq \beta$, there exists unique morphism $\varphi : Y \to X$ s.t. the following diagram commutes for all $\alpha \in A$:

$$
\begin{array}{ccc}
Y & \xrightarrow{\varphi} & X \\
\downarrow{\varphi_\alpha} & & \downarrow{\pi_\alpha} \\
X_\alpha & & \\
\end{array}
$$

If an inverse limit exists, it is unique up to \mathcal{C}-isomorphism and is denoted by $\prod X_\alpha$.

Easy fact: Inverse limits always exist in the categories of sets, groups, rings etc. and admit the following description:

$$
\prod X_\alpha = \{(x_\alpha) \in \prod X_\alpha \text{ s.t. } \pi_\beta(x_\beta) = x_\alpha \text{ for all } \alpha \leq \beta\}.
$$

26.3. **Examples of inverse systems.**

1. Let R be a ring with 1 and I an ideal of R. For $n \in \mathbb{N}$ let $R_n = R/I^n$. Then $\{R_n\}_{n \in \mathbb{N}}$ is an inverse system where the maps $\pi_{mn} : R_m \to R_n$ are natural projections. Then $\prod R_n = \hat{R}_I$, the I-adic completion of R, as proved in Algebra-I.

2. Consider the following inverse system in the category of sets. The indexing set will be \mathbb{N} (with the natural order), and each X_n is also taken to be \mathbb{N}. Define $\pi_{mn} : X_m \to X_n$ for $n \leq m$ by $\pi_{mn}(x) = x + (m - n)$. Then it is easy to see that $\prod X_n = \emptyset$.

Remark: If $\{X_\alpha\}$ is an inverse system of finite sets, then $\prod X_\alpha$ is always non-empty. This can be proved using Tychonoff’s theorem (product of compact sets is compact). The fact that the indexing set A is directed is essential for this proof.

3. Let G be a group. Let \mathfrak{A} be the set of all normal subgroups of finite index, ordered by reverse inclusion, that is, $K \leq N$ if and only if $N \subseteq K$. Then \mathfrak{A} is a directed set since if $K, N \in \mathfrak{A}$, then $K \cap N \in \mathfrak{A}$ as well. Consider the inverse system $\{G/N\}_{N \in \mathfrak{A}}$ where the maps $\pi_{K,N} : G/K \to G/N$ are natural projections. The inverse limit $\prod_{N \in \mathfrak{A}} G/N$ is called the profinite completion of G and is commonly denoted by \hat{G}.