24. Solvability of equations by radicals and solvability of Galois groups

The goal of this lecture is to prove the following theorem:

Theorem 24.1. Let F be a field of characteristic zero, $f(x) \in F[x]$ and K a splitting field for $f(x)$ over F. Then the equation $f(x) = 0$ is solvable by radicals \iff $\text{Gal}(K/F)$ is solvable.

Informally, the equation $f(x) = 0$ is solvable by radicals if the roots of $f(x)$ can be obtained from F using four arithmetic operations and taking roots (of arbitrary degree). The formal definition of solvability by radicals will be given later.

24.1. Some preparations. We start with a simple observation:

Observation 24.2. Let G be a finite group. Then G is solvable if and only if G has a chain of subgroups $G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = \{1\}$ where $G_{i+1} \triangleleft G_i$ and G_i/G_{i+1} is cyclic.

Proof. By a standard argument any finite group G has a descending chain $\{G_i\}$ where $G_{i+1} \triangleleft G_i$ and each quotient G_i/G_{i+1} simple. So, for each i either

(i) G_i/G_{i+1} is cyclic of prime order or

(ii) G_i/G_{i+1} is non-abelian simple

If (i) occurs for all i, then each G_i/G_{i+1} is solvable, so G is solvable by Algebra-I. If (ii) occurs for some i, then G_i/G_{i+1} is not solvable, whence G is not solvable. \square

Definition. A finite extension K/F is called cyclic if K/F is Galois and $\text{Gal}(K/F)$ is cyclic.

The following is a slight reformulation of Kummer’s Theorem (Theorem 23.6).

Theorem. Let F be a field containing primitive n^{th} root of unity for some n, and let K/F be a finite extension. The following are equivalent:

(a) K/F is cyclic with $[K : F] \mid n$

(b) $K = F(\sqrt[n]{a})$ for some $a \in F$.

Definition. Let F be a field of characteristic zero.
(a) Let K/F be a finite extension. We will say that K/F is a root extension if there is a chain of subfields $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n$ where for $0 \leq i \leq n - 1$ we have $K_{i+1} = K_i(\sqrt[n_i]{a_i})$ for some $a_i \in K_i$ and $n_i \in \mathbb{N}$.

(b) Let $f(x) \in F[x]$. We say that the equation $f(x) = 0$ is solvable by radicals if a splitting field of $f(x)$ over F is contained in some root extension of F.

Lemma 24.3. Assume that M/F is a root extension and let L be the Galois closure of M over F. Then L/F is also a root extension.

Proof. Exercise. The main idea is to use Problem 1(a) in HW#10 which asserts that L is the compositum of all Galois conjugates of K. \qed

24.2. Proof of the Main Theorem.

Proof of Theorem 24.1. Proofs in both directions are fairly similar, so we will only do the forward direction. Thus we are given that there is a root extension M/F s.t. $K \subseteq M$. Let L be the Galois closure of M over F. Then $F \subseteq K \subseteq L$ with L/F and K/F both Galois, so by Proposition 21.3 $\text{Gal}(K/F)$ is a quotient of $\text{Gal}(L/F)$. Thus, to prove that $\text{Gal}(K/F)$ is solvable,

it is enough to show that $\text{Gal}(L/F)$ is solvable.

By Lemma 24.3 L is a root extension, so there exist subfields $F = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_s = L$ s.t. $L_{i+1} = L_i(\sqrt[n_i]{a_i})$ for some $a_i \in L_i$ and $n_i \in \mathbb{N}$.

Easy case: F contains primitive n_ith root of unity for each i. Then by Kummer’s Theorem L_{i+1}/L_i is cyclic (in particular, Galois). Let $G_i = \text{Gal}(L/L_i)$ and $G = \text{Gal}(L/F)$.

$$F = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_s = L$$

$$G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_s = \{1\}$$

By Proposition 21.3 applied to the triple $L_i \subseteq L_{i+1} \subseteq L$ we get that $G_{i+1} \trianglelefteq G_i$ and $G_i/G_{i+1} \cong \text{Gal}(L_{i+1}/L_i)$ is cyclic. Thus by Observation 24.2 G is solvable.

General case: Since $\text{char } F = 0$, for each $n \in \mathbb{N}$ the algebraic closure of F contains primitive nth root of unity, call it ζ_n (choose one).

Let $E = F(\zeta_{n_1}, \ldots, \zeta_{n_s})$. The extension E/F is Galois since the Galois conjugates of a root of unity are its powers. In fact, it is not hard to show that $E = F(\zeta_n)$, where $n = LCM(n_1, \ldots, n_s)$ and $\text{Gal}(E/F) \cong \mathbb{Z}_n^*$, so in particular $\text{Gal}(E/F)$ is abelian.
Since E/F and L/F are both Galois, by Problem 4 in HW#9 EL/F is also Galois. Consider the chain of subfields

$$E = EL_0 \subseteq EL_1 \subseteq \ldots \subseteq EL_s = EL$$

Note that $EL_{i+1} = EL_i(\sqrt[n]{a_i})$. Since EL_i contains ζ_{n_i}, by Kummer’s theorem the extension EL_{i+1}/EL_i is cyclic.

Applying the argument from the easy case to (***)) and using the fact that EL/E is Galois (as EL/F is Galois), we deduce that $\text{Gal}(EL/E)$ is solvable. Using Proposition 21.3 again, we get that

$$\text{Gal}(EL/E) \cong \frac{\text{Gal}(EL/F)}{\text{Gal}(E/F)}.$$

Since $\text{Gal}(E/F)$ is abelian (hence also solvable), we get that $\text{Gal}(EL/F)$ is solvable.

Finally (again by Proposition 21.3), $\text{Gal}(L/F)$ is a quotient of $\text{Gal}(EL/F)$, hence also solvable. \qed