8. Equivalence relations and congruence classes

8.1. Equivalence relations and equivalence classes.

Definition. Let X be a set. A relation on X is a subset R of $X \times X$ (where $X \times X = \{(x, y) : x, y \in X\}$ is the Cartesian product of X itself). If R is a relation on X, and $x, y \in X$, we write xRy if and only if $(x, y) \in R$.

A slightly less formal but more intuitive way to think about relations is as follows. We say that R is a relation on a set X if for every $x, y \in X$ we can form an expression xRy and declare it to be either true or false (depending on x and y). This is how familiar relations like $<$ (less than) or $|$ (divisibility) on $X = \mathbb{Z}$ are defined. If a relation R on X is defined in such a way, the corresponding subset of $X \times X$ (also denoted by R) is the set of all pairs (x, y) for which xRy is true.

Definition. Let R be a relation on X. We say that R is an equivalence relation if it satisfies the following conditions:

(i) xRx for all $x \in X$ (reflexivity)

(ii) If xRy for some $x, y \in X$, then yRx (symmetry)

(iii) If xRy and yRz for some $x, y, z \in X$, then xRz (transitivity)

While R is a standard notation for a general relation, equivalence relations are typically denoted by the symbol \sim. If \sim is an equivalence relation on a set X, we often say that elements $x, y \in X$ are equivalent if $x \sim y$.

The relations $<$ and $|$ on \mathbb{Z} mentioned above are not equivalence relations (neither is symmetric and $<$ is also not reflexive). An example of equivalence relation which will be very important for us is congruence mod n (where $n \geq 2$ is a fixed integer); in other words, we set $X = \mathbb{Z}$, fix $n \geq 2$ and define the relation \sim on X by $x \sim y \iff x \equiv y \mod n$. Note that we already checked that such \sim is an equivalence relation (see Theorem 6.1 from class).

Definition. Let \sim be an equivalence relation on a set X. Given $x \in X$, we define the **equivalence class of x** to be the set

$$[x] = \{y \in X : y \sim x\}.$$

In other words, $[x]$ is the set of all elements of X which are equivalent to x. By an equivalence class (with respect to \sim) we will mean the equivalence class of some element $x \in X$.

1
Example 1. Let \(X = \mathbb{R}^2 \) (the Euclidean plane) and define the relation \(\sim \) on \(X \) by \((x_1, y_1) \sim (x_2, y_2)\) if and only if \(x_1^2 + y_1^2 = x_2^2 + y_2^2\).

It is straightforward to check that \(\sim \) is an equivalence relation. Given \((a, b) \in \mathbb{R}^2\), its equivalence class is the set \([a, b]\) = \{ \((x, y) \in \mathbb{R}^2 : x^2 + y^2 = a^2 + b^2\) \}. Clearly, \([a, b]\) is the circle of radius \(\sqrt{a^2 + b^2}\) centered at \((0, 0)\) (note that the circle “degenerates” into a point if \(a = b = 0\)).

Thus, in this example equivalence classes are circles centered at the origin and the origin itself. Observe that in our example the equivalence classes of any two elements are either the same or are disjoint (have empty intersection) and, moreover, the union of all equivalence classes is the entire set \(X\). These properties are true for equivalence classes with respect to any equivalence relation.

Proposition 8.1. Let \(\sim \) be an equivalence relation on a set \(X \). Then for any \(u, v \in X \) either \([u] = [v]\) or \([u] \cap [v] = \emptyset\). Moreover, \(\bigcup_{u \in X} [u] = X\).

The first assertion of this proposition is left as a homework exercise. The second assertion holds simply because by reflexivity any element lies in its own equivalence class \((u \in [u] \text{ for every } u \in X)\).

In Example 1 we were able to describe equivalence classes directly based on the definition, but if the formula describing the equivalence relation was more complicated, we would not be able to do this. The following “algorithm” can be used to compute all equivalence classes, at least when the number of equivalence classes is finite. Take some element \(x \in X\) and compute its equivalence class \([x]\). If \([x] = X\), we are done (there is just one equivalence class); if not, we can choose some \(y \in X \setminus [x]\) and compute its equivalence class \([y]\). If \([x] \cup [y] = X\), we are done (there are two equivalence classes); if not, choose \(z \in X \setminus ([x] \cup [y])\), compute its equivalence classes and keep going until the union of the equivalence classes we explicitly computed is the entire set \(X\).

Example 2. Let us now compute the equivalence classes with respect to relation \(\equiv \mod n\) on \(\mathbb{Z}\) (where \(n \geq 2\) is a fixed integer).

Using the above algorithm, we start with the equivalence class of 0 and add classes one at a time until we exhaust all the integers. We get

\[
\begin{align*}
[0] &= \{ x \in \mathbb{Z} : x \equiv 0 \mod n \} = \{ \ldots, -n, 0, n, 2n, \ldots \} \\
[1] &= \{ x \in \mathbb{Z} : x \equiv 1 \mod n \} = \{ \ldots, 1 - n, 1, n + 1, 2n + 1, \ldots \} \\
&\quad \cdots \\
[n-1] &= \{ x \in \mathbb{Z} : x \equiv n - 1 \mod n \} = \{ \ldots, -1, n - 1, 2n - 1, 3n - 1, \ldots \}
\end{align*}
\]
Thus, based on the above calculation, there are \(n \) (distinct) equivalence classes with respect to \(\equiv \mod n \) relation, namely \([0],[1],\ldots,[n−1]\). To formally justify this claim we need to prove that

(i) the classes \([0],[1],\ldots,[n−1]\) are distinct and

(ii) for any \(x \in \mathbb{Z} \) the class \([x]\) is equal to one of \([0],[1],\ldots,[n−1]\).

Assertion (i) is clear since the integers 0, 1, \ldots, \(n−1 \) are pairwise non-congruent to each other (mod \(n \)) and (ii) is a consequence of the following claim.

Claim 8.2. Let \(a, b \in \mathbb{Z} \). Then \([a] = [b]\) if and only if \(a \equiv b \mod n \). In particular, if we are given any \(x \in \mathbb{Z} \) and we divide \(x \) by \(n \) with remainder: \(x = nq + r \) with \(0 ≤ r ≤ n−1 \), then \([x] = [r]\).

Proof. If \([a] = [b]\), then \(a \in [a] = [b] \), so by definition \(a \equiv b \mod n \). Conversely, if \(a \equiv b \mod n \), then \(a \in [b] \), so \([a] \cap [b]\) is nonempty (as \(a \in [a] \cap [b]\)) whence \([a] = [b]\) by Proposition 8.1. \(\square \)

8.2. The ring of congruence classes \(\mathbb{Z}_n \). Fix an integer \(n \geq 2 \). The equivalence classes with respect to the relation \(\equiv \mod n \) are called congruence classes mod \(n \). We will denote the set of (distinct) congruence classes mod \(n \) by \(\mathbb{Z}_n \). Thus, as we proved above, \(\mathbb{Z}_n \) has \(n \) elements: \([0],[1],\ldots,[n−1]\).

Note that \([x]\) is a perfectly valid element of \(\mathbb{Z}_n \) for ANY \(x \in \mathbb{Z} \), not just for \(x = 0, 1, \ldots, n−1 \); it is just that taking \(x \) outside of the set \(\{0, 1, \ldots, n−1\} \) will not yield any new elements. For instance, \([n] = [0] \), \([n+1] = [1] \), \([−1] = [n−1] \) etc.

We now define two binary operations \(+\) and \(\cdot\) on \(\mathbb{Z}_n \) by setting

\[
[a] + [b] = [a + b] \quad \text{and} \quad [a] \cdot [b] = [ab].
\]

Note that in both formulas, \(+\) and \(\cdot\) on LHS are operations on \(\mathbb{Z}_n \) we are defining while \(+\) and \(\cdot\) on RHS are the usual addition and multiplication of integers.

Theorem 8.3. \(\mathbb{Z}_n \) with these operations is a commutative ring with 1.

Proof. The proof of this theorem is given in section 2.6 of the book (except that it does not use the ring terminology). As we saw in class, before checking axioms, we need to prove that operations on \(\mathbb{Z}_n \) are actually well-defined. As for verification of axioms, (A0) and (M0) hold by definition, (A1),(A2),(M1), (M2) and (D) (commutativity of addition/multiplication, associativity of addition/multiplication and distributivity) follow from the
corresponding properties of integers by the same general argument (we checked (A2) explicitly in class).

Finally, to prove (A3), (A4) and (M3) observe that (A3) holds with 0 = [0], (A4) holds with −[a] = [−a] and (M3) holds with 1 = [1]. In other words, the zero element of \(\mathbb{Z}_n \) is the congruence class of 0; the unity (1) of \(\mathbb{Z}_n \) is the congruence class of 1, and the additive inverse of the congruence class of \(a \) is the congruence class of the additive inverse of \(a \).

We finished the lecture by computing the multiplication table for \(\mathbb{Z}_6 \):

\[
\begin{array}{cccccc}
[0] & [0] & [0] & [0] & [0] & [0] & [0] \\
\end{array}
\]

Based on this table, \(\mathbb{Z}_6 \) is not a field since there is no [1] in the rows labeled by [2], [3] and [4]. Thus, the only invertible elements are [1] and [5] = [−1] and \([1]^{-1} = [1]\) and \([5]^2 = [5]\).