Recent Developments in the Micromechanics of Heterogeneous Media: Finite-Volume and Locally-Exact Homogenization Theories

Marek-Jerzy Pindera
University of Virginia

Collaborators: Mr. Hamed Khatam (University of Virginia)
Dr. Yogesh Bansal (Boeing Company)
Dr. Anthony Drago (Sikorsky Aircraft Corp)
Dr. Linfeng Chen (GMS, LLP, New York)
Mr. Marcio Cavalcante (University of Alagoas)
Prof. Severino Marques (University of Alagoas)

Rutgers University Graduate Seminar
April 15, 2009

© M-J Pindera, Engineered Materials Concepts, LLC
Definition and Importance

Micromechanics: set of techniques for predicting average (effective) response of heterogeneous materials based on the knowledge of constituent properties and geometric arrangement

\[\bar{\sigma} = C_{\text{eff}} (\bar{\varepsilon} - \bar{\varepsilon}^{\text{th}} - \bar{\varepsilon}^{\text{in}}) \]

- Enabling analysis technology to:
 - identify and select candidate material systems
 - develop engineered materials with desired mechanical and physical properties
 - design/optimize composite structural components (laminated plates, tubes, heat sinks, thermal barriers, etc.)

\[\bar{\sigma} = \text{average stress} \]
\[\bar{\varepsilon} = \text{average strain, etc...} \]
\[C_{\text{eff}} = \text{effective stiffness matrix} \]
Fundamental Micromechanics Problem

- **Localization relations:**
 \[\bar{\varepsilon}^{(k)} = A^{(k)} \bar{\varepsilon} + D^{(k)} (\bar{\varepsilon}^{(k)\text{pl}}, \bar{\varepsilon}^{(k)\text{th}}) \]

- **Average stress:**
 \[\bar{\sigma} = \frac{1}{V} \int_V \sigma(x) dV = \frac{1}{V} \sum_{k=1}^N \int_{V_k} \sigma^{(k)}(x) dV_k = \sum_{k=1}^N c_k \bar{\sigma}^{(k)} \]

- **Phase relations:**
 \[\sigma^{(k)} = C^{(k)} (\varepsilon^{(k)} - \alpha^{(k)} \Delta T) - 2\mu^{(k)} \varepsilon^{(k)\text{pl}} \]

- **Homogenized macroscopic relations:**
 \[\bar{\sigma} = C^* \bar{\varepsilon} - (\bar{\sigma}^{\text{th}} + \bar{\sigma}^{\text{pl}}) \]

\[C^* = \sum_{k=1}^N c_k C^{(k)} A^{(k)} \]

\[\bar{\sigma}^{\text{th}} + \bar{\sigma}^{\text{pl}} = -\sum_{k=1}^N c_k [C^{(k)} D^{(k)} - \Gamma^{(k)} \Delta T - \bar{\sigma}^{(k)\text{pl}}] \]
Examples of Actual Microstructures

- **Unidirectional composites**

 - Graphite/Epoxy
 - Statistically homogeneous
 - SiC/Titanium
 - Periodic (hexagonal)

 Both are transversely isotropic
Microstructural Representations

- **Statistically Homogeneous Microstructures**

 RVE \Rightarrow homogenized response characterized by either homogeneous displacement OR homogeneous traction boundary conditions

- **Periodic Microstructures**

 RUC \Rightarrow homogenized response characterized by periodic displacement AND traction boundary conditions
RUC vs RVE: Transverse Shear Response

1 fiber

36 fibers

Displacement bc’s Traction bc’s Periodic bc’s
Micromechanics Modeling Approaches

- **Microstructural Detail-Free Schemes**
 - Voigt and Reuss Estimates
 - Self-Consistent and Generalized Self-Consistent Schemes
 - Mori-Tanaka Scheme
 - Three-Phase Mode

- **Statistically Homogeneous Materials**
 - Composite Sphere/Cylinder Assemblage Model

- **Periodic Materials**
 - Approximate models: MOC, GMC
 - Asymptotic Homogenization Theory
 - FEM-based solutions of the unit cell b-v problem
 - HFGMC
 - FV-based solutions of the unit cell problem: FVDAM
 - Elasticity-based, locally-exact solutions of the unit cell b-v problem
Asymptotic Homogenization Theory

- Two scale representation of field quantities

\[
u_i^{(\varepsilon)}(x, y) = u_i^{(0)}(x, y) + \varepsilon u_i^{(1)}(x, y) + O(\varepsilon^2)
\]

where \(y = x/\varepsilon \) \(\rightarrow \)

\[
\frac{\partial}{\partial x_i} \rightarrow \frac{\partial}{\partial x_i} + \frac{1}{\varepsilon} \frac{\partial}{\partial y_i}
\]

- Governing Field Equations:

\[
\frac{\partial}{\partial x_j} \left[C_{ijkl}(y) \frac{\partial u_k(x, y)}{\partial x_l} \right] + F_i = 0
\]

- Scale Separation

 - \(\varepsilon^{-2} \) order \(\rightarrow \) \(u_i^{(0)}(x, y) = u_i^{(0)}(x) \)

 - \(\varepsilon^{-1} \) order \(\rightarrow \) unit cell b-v problem in terms of \(u_i^{(1)}(x, y) \)

\[
u_i^{(1)}(x, y) = N_i^{mn}(y) \frac{\partial u_m^{(0)}(x)}{\partial x_n}
\]
Asymptotic Homogenization Theory

- ε^0 order \Rightarrow homogenized equation for $u_i^{(0)}(x)$

$$C_{ijkl}^* \frac{\partial^2 u_k^0(x)}{\partial x_j \partial x_l} + F_i^* = 0 \Rightarrow u_i^0(x) = \bar{\varepsilon}_{ij} x_j$$

where

$$C_{ijkl}^* = \frac{1}{V_{\text{ruc}}} \int_{V_{\text{ruc}}} [C_{ijkl}(y) + C_{ijmn}(y) \frac{\partial N_{mn}^k(y)}{\partial y_n}] dV$$

• Observation: consider 0th-order stresses

$$\sigma_{ij}^{(0)}(x, y) = C_{ijkl}(y) \left[\frac{\partial u_k^0(x)}{\partial x_l} + \frac{\partial u_k^{(1)}(x, y)}{\partial y_l} \right] = C_{ijkl}(y) \left[\delta_{mk} \delta_{nl} + \frac{\partial N_{mn}^k(y)}{\partial y_l} \right] \frac{\partial u_m^{(0)}(x)}{\partial x_n}$$

$$\Rightarrow \sigma_{ij}^{(0)}(x, y) = C_{ijkl}(y) \left[\bar{\varepsilon}_{kl} + A'_{klmn}(y) \bar{\varepsilon}_{mn} \right]$$

$$\Rightarrow C_{ijkl}^* = \frac{1}{V_{\text{ruc}}} \int_{V_{\text{ruc}}} [C_{ijkl}(y) + C_{ijmn}(y) A'_{mnkl}] dV$$
Finite-Volume Direct-Averaging Theory

- **Microstructural discretization**

\[y^{(q)}_i = \sum_{p=1}^{4} N_p(\eta, \xi) y^{(p,q)}_i, \quad i = 2,3 \]

\[N_1(\eta, \xi) = \frac{1}{4(1-\eta)(1-\xi)}, \ldots \]

- **Displacement field:**

\[u^{(q)}_i(x, y) = \bar{\varepsilon}_{ij} x_j + u^{(q)}_i(y) \]

\[u^{(q)}_i = W^{(q)}_{i(00)} + \eta W^{(q)}_{i(10)} + \xi W^{(q)}_{i(01)} + \frac{1}{2} (3\eta^2 - 1) W^{(q)}_{i(20)} + \frac{1}{2} (3\xi^2 - 1) W^{(q)}_{i(02)} \]
Finite-Volume Direct-Averaging Theory

- Surface-averaged displacements

\[\hat{u}_{i}^{(1,3)} = \frac{1}{2} \int_{-1}^{+1} u'_{i} (\eta, \mp 1) d\eta, \quad \hat{u}_{i}^{(2,4)} = \frac{1}{2} \int_{-1}^{+1} u'_{i} (\pm 1, \xi) d\xi \]

- Surface-averaged tractions

\[\hat{t}_{i}^{(1,3)} = \frac{1}{2} \int_{-1}^{+1} \sigma_{ji}(\eta, \mp 1) n_{j} d\eta, \quad \hat{t}_{i}^{(2,4)} = \frac{1}{2} \int_{-1}^{+1} \sigma_{ji}(\pm 1, \xi) n_{j} d\xi \]

- Surface-averaged displacement derivative matrices

\[
\begin{bmatrix}
\frac{\partial \hat{u}'_{i}}{\partial y'_{2}} \\
\frac{\partial \hat{u}'_{i}}{\partial y'_{3}}
\end{bmatrix} = \hat{J} \begin{bmatrix}
\frac{\partial \hat{u}'_{i}}{\partial \eta} \\
\frac{\partial \hat{u}'_{i}}{\partial \xi}
\end{bmatrix}, \quad \hat{J}^{-1} = \overline{J} = \frac{1}{2} \int_{-1}^{+1} \int_{-1}^{+1} J d\eta d\xi
\]
Finite-Volume Direct-Averaging Theory

- **Satisfaction of equilibrium equations**
 \[
 \int_{S_q} t dS + \int_{V_q} F dV = 0 \quad \Rightarrow \quad \sum_{p=1}^{4} l_p t^{(q,p)} + \int_{V_q} F dV = 0
 \]

- **Local stiffness matrix construction**
 \[
 \hat{t} = NC\bar{\varepsilon} + K\hat{u}' + AN\Phi^{-1}Z^{pl} - N(\sigma^{th} + \sigma^{pl})
 \]

- **Global stiffness matrix assembly and solution**
 \[
 K\hat{U}' = \Delta C\bar{\varepsilon} + \Gamma + G \quad \Rightarrow \quad \bar{\varepsilon}^{(q)} = A^{(q)}\bar{\varepsilon} + D^{(q)}
 \]

- **Homogenized equations**
 \[
 \bar{\sigma} = C^*\bar{\varepsilon} - (\bar{\varepsilon}^{th} + \bar{\varepsilon}^{pl})
 \]
Effect of Mesh Refinement on Moduli

\[\frac{E_f}{E_m} = 10 \]

\[\frac{E_f}{E_m} = 0.01 \]
Effect of Mesh Refinement on Stresses

\(\bar{\sigma}_{12} \neq 0 \)

\(\sigma_{12} \) distributions vs mesh refinement \((24 \times 24, 48 \times 48, 96 \times 96)\)

\(\sigma_{13} \) distributions vs mesh refinement \((24 \times 24, 48 \times 48, 96 \times 96)\)
Mechanics of Wavy Periodic Multilayers

<table>
<thead>
<tr>
<th>Material</th>
<th>Young’s modulus (MPa)</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft layers</td>
<td>7,000</td>
<td>0.30</td>
</tr>
<tr>
<td>Hard layers</td>
<td>70,000</td>
<td>0.22</td>
</tr>
</tbody>
</table>
FVDAM Theory vs FE Method

\[\bar{\sigma}_{22} = 1 \text{ MPa} \]

\[\sigma_{22} \] distributions

\[\sigma_{23} \] distributions
Elastic-Plastic Response

σ_{22} distributions at \(\bar{\varepsilon}_{22} = 0.25\% \) (top) and \(\bar{\varepsilon}_{22} = 1.0\% \) (bottom)
Mechanics of Perforated Thin Sheets
Elastic-Plastic Response & Localization

![Graphs showing stress-strain relationship for different hole arrangements](image)

- Circular holes (square array)
- Circular holes (hex array)
- Square holes (square array)
- Hexagonal holes (hex array)
- Slots (hex array)
Locally-Exact Homogenization Theory

- **Displacement field:**
 \[u_i(x, y) = \bar{E}_{ij} x_j + u'_i(y) \]

- **Interior problem:** locally exact solution → satisfy the Navier’s equations and the fiber-matrix continuity in cylindrical coordinates

- **Exterior problem:** solved in Cartesian coordinates using a variational principle
Interior Problem

- **Locally exact solutions**

\[
u'_z = H^{(f,m)}_{01} + \sum_{n=1}^{N} \left(\zeta^n H^{(f,m)}_{n1} + \zeta^{-n} H^{(m)}_{n3} \right) \cos(n\theta) + \left(\zeta^n H^{(f,m)}_{n2} + \zeta^{-n} H^{(m)}_{n4} \right) \sin(n\theta)
\]

\[
u'_r = \zeta F^{(f,m)}_{01} + \zeta^{-1} F^{(m)}_{02} + F^{(f,m)}_{12} \cos \theta + G_{12}^{(f,m)} \sin \theta \\
+ \sum_{n=2}^{N} \sum_{j=1}^{4} \zeta^p_{nj} \left[F^{(f,m)}_{nj} \cos(n\theta) + G^{(f,m)}_{nj} \sin(n\theta) \right]
\]

\[
u'_\theta = -F^{(f,m)}_{12} \sin \theta + G_{12}^{(f,m)} \cos \theta + \sum_{n=2}^{N} \sum_{j=1}^{4} \beta_{nj} \zeta^p_{nj} \left[F^{(f,m)}_{nj} \sin(n\theta) - G^{(f,m)}_{nj} \cos(n\theta) \right]
\]

- **Fiber/matrix continuity**

\[
A^m_n F^m_n = A^f_n F^f_n + \delta_{n2} A_o \left(\bar{\varepsilon}_{22} - \bar{\varepsilon}_{23} \right)
\]

\[
A^m_n G^m_n = A^f_n G^f_n + \delta_{n2} A_o \left(2\bar{\varepsilon}_{23} \right)
\]

\[
H^m_n = A^f_1 H^f_n + \delta_{n1} A_2 \left[2\bar{\varepsilon}_{12} 2\bar{\varepsilon}_{12} \right]^T
\]
Exterior Problem

- Balanced Variational principle

\[H = \frac{1}{2} \int_V \sigma_{ij} \varepsilon_{ij} \, dV - \int_{S_u} T_i u_i^o \, dS - \int_{S_r} T_i^o u_i \, dS \]

- Periodic boundary conditions

\[u_i(x+d) = u_i(x) + \varepsilon_{ij} d_j \quad \Rightarrow \quad u_i'(x+d) = u_i'(x) \]
\[T_i(x+d) + T_i(x) = 0 \]

- Minimization

\[\int_{S_u} \delta T_i (u_i - u_i^o) \, dS + \int_{S_r} \delta u_i (T_i - T_i^o) \, dS = 0 \]

- Global system of equations:

\[A x = B \bar{\varepsilon} \]
Convergence Characteristics

\[\frac{E_f}{E_m} = 10 \]
Comparison of Homogenized Moduli

\[\frac{E_f}{E_m} = 10 \]
Comparison of Local Stress Fields

Loading by $\bar{\varepsilon}_{23} \neq 0$

σ_{23}

σ_{22}
Comparison of Boundary Deformations

Transverse Normal Loading

Transverse Shear Loading

Stiff Fiber

Porosity

Legend:
- Dashed blue line: Undeformed
- Red line: Deformed - Analytical
- Black circle: Deformed - FEA
Multi-Inclusion Unit Cells – 1st Steps

- Multi-scale analysis
 - Large fiber, $v_f = 40\%$
 - Small fiber, $v_f = 1\%$

FEA Mesh – 9,752 elements \rightarrow 39,811 DOFs
Series - 12 harmonics per subvolume \rightarrow 188 Coefficients
Comparison of Stress Fields

Loading by $\bar{\varepsilon}_{22} \neq 0$

(a) Balanced Variational Principle
(b) FEA
Comparison of Stress Fields

Loading by $\bar{\varepsilon}_{23} \neq 0$
Summary & Things to Do

- FVDAM produces stable macroscopic response even with relatively coarse mesh discretization
- High-fidelity stress fields with FEM accuracy require greater discretization
- FVDAM is the more developed of the two methods, with "apparently" greater potential
- LEXHT in early stages of development with promising results
- Extension to multi-inclusion unit cells with arbitrary distributions a major step
- Possibility of three-dimensional analysis of unit cells with ellipsoidal inclusions