Def A permutation group is any group of the form Σ_{x}:

$\{ f : x \mapsto x \mid f \text{ is } 1-1 \text{ or onto} \}$.

Thm 19 Any group is a subgroup of a permutation group.

Pf: $x = G$

Need an injective map $G \rightarrow S_{G}$

\Rightarrow 1st isom. thm $\Rightarrow G \cong \text{Im} \leq S_{G}$

$\phi : G \rightarrow S_{G}$

$\phi (g)(h) = gh$

$\phi (g)$ is 1-1 \Rightarrow onto:

$\phi (g)(h_{1}) = \phi (g)(h_{2})$

$gh_{1} = gh_{2} \Rightarrow h_{1} = h_{2}$ (left multiply by g^{-1})

Given $h \in G$, $\phi (g)(g^{-1}h) = g(g^{-1}h) = e \cdot h = h$

ϕ is injective

$\phi (g) = \text{Id} : G \rightarrow G$, then $g = e$

If $gh = h$ $\forall h \in G$, then $g = e$. The blc e is unique.

$\Rightarrow \phi$ is injective $\Rightarrow G \cong \text{Im}(\phi)$. \blacksquare

If $|G| < \infty$, then $|S_{G}| = |G|!$

Any homomorphism $G \rightarrow S_{x}$ is called a representation of G.

If $G \rightarrow S_{x}$ is a homomorphism, X is a G-set.

If $H \leq G$ is a subgroup, then G acts on G/H

\leftrightarrow have a homomorphism $G \rightarrow S_{G/H}$

$\phi_{H}(g)(aH) = gaH$
Prop 20: For any H, ϕ_H is a homomorphism.

PF:
\[\phi_H(g \cdot h) = \phi_H(g) \cdot \phi_H(h) \]
\[\text{mult in} \quad G \quad \text{mult in} \quad S_{G/H} \]
\[\phi_H(g \cdot h)(aH) = (g \cdot h) \cdot aH = g \cdot (h \cdot aH) = \phi_H(g)(h \cdot aH) \]
\[= \phi_H(g) \left(\phi_H(h)(aH) \right) = \phi_H(g) \cdot \phi_H(h)(aH) \]

Lemma 21: The kernel of ϕ_H is the largest normal s.g. of G contained in H.

PF:
$\ker(\phi_H)$ is always normal.

1) $\ker(\phi_H) \subseteq H$

2) If N is normal, $N \subseteq H$, then $N \subseteq \ker(\phi_H)$.

i) $g \in \ker(\phi_H) \iff \phi_H(g) = \text{Id} \iff \phi_H(g)(eH) = eH$
\[\Rightarrow gH = H \Rightarrow g \in H. \]

ii) $n \in N \subseteq H \quad \phi_H(n)(gH) = n gH$
\[N \triangleleft G \Rightarrow ng = gn' \Rightarrow \phi_H(n)(gH) = gn'H \]
\[\exists g' : Ng = N \]
\[\text{i.e.} \quad \phi_H(n) = \text{Id} \]
\[\Rightarrow n \in \ker(\phi_H). \]

Assume G is finite.

Cor 22: If H is a s.g. of G s.t. $|G| \nmid [G:H]$, then G has a non-trivial normal s.g. contained in H.

PF:
\[\phi_H : G \rightarrow S_{G/H}, \quad \text{Im}(\phi_H) \text{ is a s.g. of } S_{G/H} \]
\[\Rightarrow |\text{Im}(\phi_H)| \text{ divides } |S_{G/H}| = [G:H]! \]
\[|G|/|\ker(\phi_H)| = |G|/|\ker(\phi_H)| \]
\[|G|/|\ker(\phi_H)| \mid [G:H]! \]
Cor 23: If \(H \) is a s.g. of \(G \) s.t. \(|H| \) and \((|G|/|H| - 1)!\) are relatively prime, then \(H \) is normal.

Proof: \(\text{Im}(\phi_H) \) is a s.g. of \(S_{G/H} \), so if \(N \) is the kernel of \(\phi_H \), then \(|G|/|N| = |G/\langle \phi_H \rangle| = |\text{Im}(\phi_H)| = |[G:H]| = (|G|/|H|)! \). Therefore, \(|G|/|N| = |G|/|H| \cdot |H|/|N| \mid (|G|/|H|)! \).

\[\Rightarrow \quad |H|/|N| \text{ divides } ([G:H]-1)! \]

\[(|H|, ([G:H]-1)!) = 1 \iff \text{are relatively prime} \]

\[\Rightarrow \quad \text{every factor of } |H| \text{ is a factor of } |N| \]

\[\Rightarrow \quad |H| = |N| \Rightarrow H = N. \quad \Box \]

(a, b) = greatest common divisor of \(a \) and \(b \).

Cor 24: If \(p \) is the smallest prime dividing \(|G| \), then any subgroup of index \(p \) is normal.

Proof: \([G:H] = p\), and \(|H| \) divides \(|G| \); \(p \geq p \).

Cor 23: \(|H| \mid (p-1)! \) are relatively prime \(\Rightarrow H \) is normal.

Def: An \(G \)-action on a set \(X \) is a homomorphism
\[G \rightarrow S_X \]

Remark: A functor \(\Phi: G \rightarrow \text{Sets} \)
\[\begin{align*}
\text{obj} \ G & \rightarrow \text{Obj} \text{Sets} \\
\text{Mor} \ G & \rightarrow \text{Mor} \text{Sets} \\
\phi(g) \in \text{Hom}(x,x') & \in S_X
\end{align*} \]

Ex: \(G \) acts on itself:
\[\Phi: G \rightarrow S_G, \quad R: G \rightarrow S_G \]
\[R(gh)(a) = h g^{-1} a \text{ to make } R(gh) = R(g) \circ R(h) \]
\[c: G \rightarrow S_G \]
\[c(g)(h) = ghg^{-1} = \text{conjugation} \]

\[c(g) \] is a group homomorphism for all \(g \).

\[\rightarrow \text{ an automorphism} \]

\[c(g)(ab) = g(ab)g^{-1} = g(ae b)g^{-1} = g(a(g^{-1} b))g^{-1} = (gag^{-1})(gbg^{-1}) = (c(g)(a))(c(g)(b)) \]

\[\text{Def} \quad \text{The kernel of } c \text{ is the center of } G: Z(G) \]

\[\leftrightarrow \quad \exists g \in G \mid gag^{-1} = a \quad \forall a \in G \quad \mid ga = ag \quad \forall a \in G \]

\[\text{ie } Z(G) \text{ is the set of elements that commute with everything.} \]

\[\text{Def} \quad X \text{ is a } G \text{-set, } x \in X, \quad (\phi: G \rightarrow S_X) \]

\[\text{the orbit of } x : Gx = \{ g \cdot x \mid g \in G \} \]

\[\phi(g)(x) \]

\[\text{the stabilize subgroup of } x : G(x) = \text{Stab}_G(x) = \{ g \in G \mid g \cdot x = x \} \]

Underlying the orbits is an equivalence relation:

\[x \sim y \quad \text{if} \quad y = g \cdot x \quad \text{some } g \]

\[[x] = Gx \]

\[|Gx| = |G: \text{Stab}_G(x)| = |G/\text{Stab}_G(x)| \]

\[g \cdot x \mapsto g \cdot \text{Stab}_G(x) \]

\[g \cdot x = h \cdot x \quad \iff \quad g^{-1} h \cdot x = x \quad \iff \quad g^{-1} h \in \text{Stab}_G(x) \]

\[\iff [g] = [h] \text{ in } G/\text{Stab}_G(x) \]

\[\text{Lemma 25 : Class Equation:} \]

\[|G| = |Z(G)| + \sum [G: \text{Stab}_G(x)] \]

G acts on itself by conjugation.

Hence \(\text{Stab}_G(x) = C(x) = \text{Cent}(x) = \{ g \mid g \cdot x = xg \} \).