1. Background

2. Definitions

3. Fibonacci in Groups and Rings
 - The Golden Matrix Ring
 - Example 1
 - Example 2

4. Fibonacci in the \mathbb{R} world
 - Fibonacci Spirals
 - Application to Music
Fibonacci the Man

- Leonardo Pisano
- Lived from 1170 to 1250
- He was an Italian mathematician who has been called the most talented mathematician of the Middle Ages
- He is known for
 - Spreading the Hindu-Arabic numeral system in Europe
 - The Fibonacci numbers
The Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, ...

The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, \(G = 1.618033989... \).

The reciprocal of \(G \) is \(\frac{1}{G} = 0.618033989... \), so

\[
1 + G \approx 2.016071305
\]
The Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13, ...
The Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13, ...

- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, $G(S)$ = 1.618033989...
The Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13,...
- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, \(G(S) = 1.618033989... \)
- The reciprocal of \(G(S) \) is 0.1618033989..., so
The Fibonacci Numbers

- 0, 1, 1, 2, 3, 5, 8, 13,
- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, \(G(S) = 1.618033989... \)
- The reciprocal of \(G(S) \) is 0.1618033989..., so \(1/G(S) = 1 + G(S) \)
Background

- Fibonacci groups were first introduced by J. H. Conway, the creator of the Game of Life (a cellular automaton).
- Used largely to test various computational techniques.
Definitions

- **Fundamental Period** - the length of the smallest portion of the domain over which the function completes a cycle.
Definitions

- Fundamental Period - the length of a smallest portion of the domain over which the function completes a cycle
- $k(m)$ - the Fibonacci length of a sequence mod m
Definitions Cont.

- **Fibonacci Sequence** - the first number of the sequence is 0, the second 1, and each subsequent number is equal to the sum of the previous two numbers
Fibonacci Sequence - the first number of the sequence is 0, the second 1, and each subsequent number is equal to the sum of the previous two numbers.

Fibonacci Group - the Fibonacci group $F(n)$ is defined by $F(n) = \langle a_1, a_2, \ldots, a_n | a_ia_{i+1} = a_{i+2}, i = 1, \ldots, n \rangle$ where the subscripts are reduced mod n to lie in the range 1,2,...n.
Golden Matrix Ring

The matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$
can be used to derive an explicit formula for the Fibonacci Numbers in terms of the golden ratio, $\phi = (1 + \sqrt{5})/2$, and its conjugate.
Golden Matrix Ring

The matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ can be used to derive an explicit formula for the Fibonacci Numbers in terms of the golden ratio, $\phi = (1 + \sqrt{5})/2$, and its conjugate. The simplest ring generated by A is $\mathbb{Z}[A]$, the ring of polynomials in A with integer coefficients.
G.M.R. Cont.

In \(\mathbb{Z}[A] \), \(A^2 - A - 1 = 0 \) because the characteristic polynomial of \(A \) is \(\det(XI - A) = X^2 - X - 1 \), which is also the characteristic polynomial of the Fibonacci recurrence relation \(F_{n+2} = F_{n+1} + F_n \).
G.M.R. Cont.

Since ϕ is the positive root of $\phi^2 - \phi - 1 = 0$, $\mathbb{Z}[A]$ and $\mathbb{Z}[\phi]$ are isomorphic under the eigenvalue map $\varepsilon: \mathbb{Z}[A] \rightarrow \mathbb{Z}[\phi]$ determined by $\varepsilon(A) = \phi$ and $\varepsilon(I) = 1$.

G.M.R. Cont.

\[\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1) \]
G.M.R. Cont.

- $\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$
- $\mathbb{Z}[X] \rightarrow \mathbb{Z}[\phi]$
G.M.R. Cont.

- $\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$
- $\mathbb{Z}[X] \rightarrow \mathbb{Z}[\phi]$
- $x \mapsto \phi$
G.M.R. Cont.

- \(\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1) \)
- \(\mathbb{Z}[X] \to \mathbb{Z}[\phi] \)
- \(x \mapsto \phi \)
- \(x^2 - x - 1 \mapsto \phi^2 - \phi - 1 = 0 \)
G.M.R. Cont.

- \(\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1) \)
- \(\mathbb{Z}[X] \rightarrow \mathbb{Z}[\phi] \)
- \(x \mapsto \phi \)
- \(x^2 - x - 1 \mapsto \phi^2 - \phi - 1 = 0 \)
- So \(\text{Ker} = \langle x^2 - x - 1 \rangle \)
Because the roots of $x^2 - x - 1$ are not in \mathbb{Z}, $x^2 - x - 1$ is irreducible, and therefore prime.
Because the roots of \(x^2 - x - 1 \) are not in \(\mathbb{Z} \), \(x^2 - x - 1 \) is irreducible, and therefore prime.

This means \(\mathbb{Z}[\phi] \) is an integral domain.
To find the units of $\mathbb{Z}[\phi]$:
To find the units of $\mathbb{Z}[\phi]$:

- $\phi^2 - \phi - 1 = 0$
G.M.R. Cont.

To find the units of $\mathbb{Z}[\phi]$:

- $\phi^2 - \phi - 1 = 0$
- $\phi^2 - \phi = 1$
G.M.R. Cont.

To find the units of $\mathbb{Z}[\phi]$:

- $\phi^2 - \phi - 1 = 0$
- $\phi^2 - \phi = 1$
- $\phi(\phi - 1) = 1$
G.M.R. Cont.

To find the units of $\mathbb{Z}[\phi]$:

- $\phi^2 - \phi - 1 = 0$
- $\phi^2 - \phi = 1$
- $\phi(\phi - 1) = 1$
- So ϕ is a unit and $(1 - \phi) = \phi^{-1} = -\bar{\phi}$
To find the units of $\mathbb{Z}[\phi]$:

- $\phi^2 - \phi - 1 = 0$
- $\phi^2 - \phi = 1$
- $\phi(\phi - 1) = 1$
- So ϕ is a unit and $(1 - \phi) = \phi^{-1} = -\bar{\phi}$
- Since ϕ is a unit, so is ϕ^n
G.M.R. Cont.

\[\phi(\phi - 1) = \phi \phi^{-1} = \phi(-\phi) = -\phi \bar{\phi} = -\phi(\phi - 1) = 1 \]
G.M.R. Cont.

\[
\phi(\phi - 1) = \phi \phi^{-1} = \phi(-\bar{\phi}) = -\phi \bar{\phi} = -\phi(\phi - 1) = 1
\]

So \(-\phi^n\) is also a unit
G.M.R. Cont.

- \(\phi(\phi - 1) = \phi \phi^{-1} = \phi(-\bar{\phi}) = -\phi \bar{\phi} = -\phi(\phi - 1) = 1 \)
- So \(-\phi^n\) is also a unit
- So the units are \(\pm \phi^{\pm n} \)
By the isomorphism ε, $\mathbb{Z}[A]$ shares the same properties.

......

$\mathbb{Z}[A]$ is called the Golden Matrix Ring
The Ring of Generalized Fibonacci Sequences

- Consider the set \(\mathbb{F} \) of all integer sequences \(\{G_n\}_{n=1}^{\infty} \) satisfying the recurrence relation \(G_{n+2} = G_{n+1} + G_n \), regardless of initial conditions.
The Ring of Generalized Fibonacci Sequences

- Consider the set \mathbb{F} of all integer sequences $\{G_n\}_{n=1}^{\infty}$ satisfying the recurrence relation $G_{n+2} = G_{n+1} + G_n$, regardless of initial conditions.
- This is the generalized Fibonacci Sequence.
The Ring of Generalized Fibonacci Sequences

- Consider the set \mathbb{F} of all integer sequences $\{G_n\}_{n=1}^\infty$ satisfying the recurrence relation $G_{n+2} = G_{n+1} + G_n$, regardless of initial conditions.
- This is the generalized Fibonacci Sequence.
- \mathbb{F} is an abelian group under the addition $\{G_n\} + \{H_n\} = \{G_n + H_n\}$.
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \to \mathbb{Z}[A]$
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) =$
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I$.
The Ring of Generalized Fibonacci Sequences

Define the matrix map $\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]$ by

$$\mathcal{M} (\{G_n\}) = (G_1 - G_0)I + G_0 A.$$
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.

- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]$ by $\mathcal{M}({G_n}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA$.
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}({G_n}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA = A^n$.
The Ring of Generalized Fibonacci Sequences

- Define the matrix map \(\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]\) by \(\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A\).

- \(\mathcal{M}\) is a group homomorphism and by induction, using \(A^2 = A + I\), we get \(G_{n-1} + G_nA = A^n \mathcal{M}(\{G_n\})\) (Let this equal D).
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
The Ring of Generalized Fibonacci Sequences

- Define the matrix map \(\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A] \) by \(\mathcal{M}({G_n}) = (G_1 - G_0)I + G_0 A \).
- \(\mathcal{M} \) is a group homomorphism and by induction, using \(A^2 = A + I \), we get \(G_{n-1} + G_n A = A^n \mathcal{M}({G_n}) \) (Let this equal \(D \)).
- Here \(a = G_{n-1} \) and \(b = G_n \)
- This gives you \(G_n = b = G(D) \).
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \rightarrow \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA = A^n \mathcal{M}(\{G_n\}$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = G(D)$.
- Define the sequence map $\mathcal{L} : \mathbb{Z}[A] \rightarrow \mathbb{F}$
The Ring of Generalized Fibonacci Sequences

- Define the matrix map \(M : \mathbb{F} \to \mathbb{Z}[A] \) by \(M(\{G_n\}) = (G_1 - G_0)I + G_0 A \).
- \(M \) is a group homomorphism and by induction, using \(A^2 = A + I \), we get \(G_{n-1} + G_n A = A^n M(\{G_n\}) \) (Let this equal \(D \)).
- Here \(a = G_{n-1} \) and \(b = G_n \)
- This gives you \(G_n = b = G(D) \).
- Define the sequence map \(L : \mathbb{Z}[A] \to \mathbb{F} \) by \(L(a + bA) \).
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA = A^n \cdot \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = G(D)$.
- Define the sequence map $\mathcal{L} : \mathbb{Z}[A] \to \mathbb{F}$ by $\mathcal{L}(a + bA) = \{G(A^n(a + bA))\}$.
The Ring of Generalized Fibonacci Sequences

- Define the matrix map $\mathcal{M} : \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_nA = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = G(D)$.
- Define the sequence map $\mathcal{L} : \mathbb{Z}[A] \to \mathbb{F}$ by $\mathcal{L}(a + bA) = \{G(A^n(a + bA))\}$.
- Then \mathcal{L} is a group homomorphism.
The Ring of Generalized Fibonacci Sequences

- $\mathcal{L}(\mathcal{M}([G_n])) = \{G_n\}$ and $\mathcal{M}(\mathcal{L}(a + bA)) = (a + bA)$.

The Ring of Generalized Fibonacci Sequences

- \(\mathcal{L}(\mathcal{M}([G_n])) = \{G_n\} \) and \(\mathcal{M}(\mathcal{L}(a + bA)) = (a + bA) \).
- Thus, \(\mathcal{L} \) and \(\mathcal{M} \) form an inverse pair of group isomorphisms.
The Ring of Generalized Fibonacci Sequences

- \(\mathcal{L}(\mathcal{M}({G_n})) = \{G_n\} \) and \(\mathcal{M}(\mathcal{L}(a+bA)) = (a+bA) \).

Thus, \(\mathcal{L} \) and \(\mathcal{M} \) form an inverse pair of group isomorphisms.

- We can transfer the multiplicative structure of \(\mathbb{Z}[A] \) to \(\mathbb{F} \) via \(\mathcal{L} \) and \(\mathcal{M} \).
The Ring of Generalized Fibonacci Sequences

- We define \(\{G_n\}\{H_n\} \)
The Ring of Generalized Fibonacci Sequences

- We define \(\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\})) \)
The Ring of Generalized Fibonacci Sequences

We define \(\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\}) \cdot \mathcal{M}(\{H_n\})) \)
The Ring of Generalized Fibonacci Sequences

We define \(\{G_n\}\{H_n\} = L(M(\{G_n\}) \cdot M(\{H_n\})) \) and denote it by \(\{(GH)_n\} \).
The Ring of Generalized Fibonacci Sequences

- We define \(\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\}) \cdot \mathcal{M}(\{H_n\})) \) and denote it by \(\{(GH)_n\} \).

- With this multiplication, \(\mathbb{F} \) becomes a ring, and the maps \(\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A] \) and \(\mathcal{L}: \mathbb{Z}[A] \to \mathbb{F} \) are isomorphisms of rings.
Fibonacci Sequences and Groups

An ordered pair \((x_1, x_2)\) of elements of a group \(G\) determines a sequence in \(G\) by the rule \(x_n x_{n+1} = x_{n+2}, n \in \mathbb{N}\).
Fibonacci Sequences and Groups

- An ordered pair \((x_1, x_2)\) of elements of a group \(G\) determines a sequence in \(G\) by the rule \(x_nx_{n+1} = x_{n+2}, \ n \in \mathbb{N}\).
- When this sequence is periodic, its fundamental period is called the Fibonacci length of \((x_1, x_2)\) in \(G\).
An Example

For the group $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle a, b | a^2 = b^2 = 1 \rangle$ we obtain the sequence

$$a, b, ab, bab, b, ba, a, b, ...$$

showing that the infinite dihedral group has Fibonacci length 6
A Second Example

The values of $U_n \pmod{7}$ are

$$0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1$$

and then repeat; so $k(7) = 16$. Note that $U_8 = 0 \pmod{7}$ so that the 16 terms in the period form two sets of 8 terms each.
Fibonacci in the \mathbb{R} World
Fibonacci Spirals

Start with a rectangle
Spirals Cont.

Then you create a square and a rectangle within the original rectangle

You continue doing this until you reach...
Spirals Cont.
Then you draw a spiral within the rectangle...
Application to Nature

- The approach of a hawk to its prey: Their sharpest view is at an angle to their direction of flight; this angle is the same as the spiral’s pitch.
- The arms of tropical storms
- The arms of spiral galaxies; the Milky Way, is believed to have 4 major spiral arms, each a Fibonacci spiral with pitch of about 12 degrees
Turku Power Station, Finland
Fibonacci Numbers in Music

Lateratus by Tool: If you count between pauses, the syllables in the verses from the first several Fibonacci numbers:

- (1) Black,
- (1) then,
- (2) white are,
- (3) all I see,
- (5) in my infancy,
- (8) red and yellow then came to be,
- (5) reaching out to me,
- (3) lets me see.
- (2) There is,
- (1) so,
- (1) much,
- (2) more that
- (3) beckons me,
- (5) to look through to these,
- (8) infinite possibilities.
- (13) As below so above and beyond I imagine,
- (8) drawn outside the lines of reason,
- (5) push the envelope,
- (3) watch it bend.
The time signatures of the chorus change from 9/8 to 8/8 to 7/8, and the song’s original name was 9-8-7. 987 is the 17th step of the Fibonacci sequence.