Look for places where the tangent plane is horizontal.

\leftrightarrow equation of the plane is of the form $z = c = 0$.

The equation of the tangent plane is

$$z - f(a,b) = \frac{\partial f}{\partial x}(a,b) \cdot (x-a) + \frac{\partial f}{\partial y}(a,b) \cdot (y-b)$$

\Rightarrow tangent plane is horizontal iff

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0.$$

Def (a,b) is a **critical point** if $\nabla f(a,b) = \mathbf{0}$.

Ex:

$f(x,y) = x^3 - 3x + y^3 - 3y$

$$\frac{\partial f}{\partial x} = 3x^2 - 3 = 0 \Rightarrow x = \pm 1$$

$$\frac{\partial f}{\partial y} = 3y^2 - 3 = 0 \Rightarrow y = \pm 1$$

Critical points:

$(1,1), (1,-1), (-1,1), (-1,-1)$.

Since the gradient points in the direction of steepest ascent, at
critical points, there is no such direction.

Def A function f has a **local max** at (a,b) if

$$f(a,b) \geq f(c,d)$$

for all (c,d) close to (a,b).

A function f has a **local min** at (a,b) if

$$f(a,b) \leq f(c,d)$$

for all (c,d) close to (a,b).

Maxima & minima occur at critical points.

Ex

$f(x,y) = xy$

$$\frac{\partial f}{\partial x} = y = 0 \Rightarrow y = 0$$

$$\frac{\partial f}{\partial y} = x = 0 \Rightarrow x = 0$$

There is one critical point: $(0,0)$
This point is not a maximum or minimum. It looks like a saddle.

In the 1-var case, have the second derivative test:

\[
\text{If } f'(a) = 0 \Rightarrow \begin{cases} f''(a) > 0 \Rightarrow \text{min} \\ f''(a) < 0 \Rightarrow \text{max} \end{cases}
\]

In the 2-var case, have more directions to worry about:

\[
\frac{\partial^2 f}{\partial x^2}(a,b) \begin{cases} > 0 & \text{curve is concave up in } x\text{-direction} \\ < 0 & \text{curve is concave down in } x\text{-direction} \end{cases}
\]

\[
\frac{\partial^2 f}{\partial y^2}(a,b) \begin{cases} > 0 & \text{curve is concave up in } y\text{-direction} \\ < 0 & \text{curve is concave down in } y\text{-direction} \end{cases}
\]

Let \[D = \left(\frac{\partial^2 f}{\partial x^2} \right) \cdot \left(\frac{\partial^2 f}{\partial y^2} \right) - \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2\]

Then if \((a,b)\) is a critical point then at \((a,b)\), \(f\) has a

- **maximum** if \(D > 0\), \(\frac{\partial^2 f}{\partial x^2}(a,b) < 0\)
- **minimum** if \(D > 0\), \(\frac{\partial^2 f}{\partial x^2}(a,b) > 0\)
- **saddle point** if \(D < 0\)

\[- \left(\frac{\partial^2 f}{\partial x \partial y} \right)\] is always less than or equal to zero,

if \(D > 0\), then \(\left(\frac{\partial^2 f}{\partial x^2} \right) \cdot \left(\frac{\partial^2 f}{\partial y^2} \right) > 0\).

Thus if \(D > 0\), \(\frac{\partial^2 f}{\partial x^2} \neq \frac{\partial^2 f}{\partial y^2}\) have the same sign.

\[\Rightarrow x\text{-curves } \& \ y\text{-curves have same concavity.}\]

Can check sign of either \(\frac{\partial f}{\partial x^2}\) or \(\frac{\partial f}{\partial y^2}\).

Ex: \(f(x,y) = xy\). Saw critical point at \((0,0)\).

\[
\frac{\partial^2 f}{\partial x^2} = 0 = \frac{\partial^2 f}{\partial y^2}, \quad \frac{\partial^2 f}{\partial x \partial y} = 1, \quad \text{so } D = -1.
\]

This is a saddle.
Ex: \(f(x,y) = x^3 - 3xy + y^3 \)
\[D = 36xy \]

<table>
<thead>
<tr>
<th>C.p.</th>
<th>(D)</th>
<th>(\frac{df}{dx^2})</th>
<th>max? min? saddle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1,1))</td>
<td>36 > 0</td>
<td>6 > 0</td>
<td>min</td>
</tr>
<tr>
<td>((1,-1))</td>
<td>-36 < 0</td>
<td></td>
<td>saddle</td>
</tr>
<tr>
<td>((-1,1))</td>
<td>-36 < 0</td>
<td></td>
<td>saddle</td>
</tr>
<tr>
<td>((-1,-1))</td>
<td>36 > 0</td>
<td>-6 < 0</td>
<td>max</td>
</tr>
</tbody>
</table>

Ex: \(f(x,y) = x^3 - 3xy + y^3 \)

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 3x^2 - 3y = 0 \\
\frac{\partial f}{\partial y} &= 3y^2 - 3x = 0
\end{align*}
\]

must be true simultaneously:

\[
\begin{align*}
x &= y \\
y &= x
\end{align*}
\]

2 c.p.: \((0,0)\)
\((1,1)\)

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= 6x \\
\frac{\partial^2 f}{\partial x \partial y} &= -3 \\
\frac{\partial^2 f}{\partial y^2} &= 6y
\end{align*}
\]

\[
\begin{align*}
D &= (6x)(6y) - (-3)^2 = 36xy - 9
\end{align*}
\]

<table>
<thead>
<tr>
<th>C.p.</th>
<th>(D)</th>
<th>(\frac{df}{dx^2})</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0))</td>
<td>-9 < 0</td>
<td></td>
<td>saddle</td>
</tr>
<tr>
<td>((1,1))</td>
<td>27 > 0</td>
<td>6 > 0</td>
<td>min</td>
</tr>
</tbody>
</table>