1. For phase diagram shown below, sketch the Gibbs free energy as a function of composition for temperatures T_1 and T_2.

Indicate solidus, liquidus, and solvus lines, eutectic, peritectic, eutectoid, peritectoid, monotectic isotherms, eutectic, peritectic, eutectoid, peritectoid, monotectic points, intermediate phase, if any.
2. (a) Label the phases in the phase diagram shown below.

(b) For points 1 and 3 marked in the phase diagram determine compositions of the phases present and the relative fractions of the phases (please show work, not just the final result).

(c) For an alloy with composition 92 wt.% B and two temperatures marked by points 2 and 3 in the phase diagram shown in the previous page, draw schematically the microstructure formed by a slow cooling from the melt. On your drawing, please list and label all the phases and microconstituents.

(d) For point 3, calculate the fractions of the microconstituents, assuming that the composition at the eutectic point is at 90 wt.% B (please show work, not just the final result)
3. (a) For Fe-C alloy with composition of 3 wt.% C draw schematically the microstructure for three points (C, B, A) marked at the diagram. Alloy is formed by a very slow cooling from the melt as shown by arrow in the phase diagram. On your drawing, please list and label all the phases and microconstituents.

(b) For the point A (at temperature 720°C) in the Fe-C phase diagram, calculate:
(1) compositions of all the phases present;
(2) the relative fractions of the phases;
(3) the relative fractions of microconstituents.

Please show work, not just the final result
Please name the phases and microconstituents