____________

At UVa:

____________

1. Apo- and cellopentaose-bound structures of the bacterial cellulose synthase subunit BcsZ, Mazur O, Zimmer J.J. Biol. Chem. 2011, May 20, 286(20):17601-6

2. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan, Hubbard C, McNamara JT, Azumaya C, Patel MS, Zimmer J.J Mol. Biol. 2012, Apr 20;418(1-2):21-31

3. Crystallographic snapshot of cellulose synthesis and membrane translocation, Morgan JL, Strumillo J, Zimmer J., Nature 2013, 493, 181-6

4. Tertiary model of a plant cellulose synthase, Sethaphong L, Haigler CH, Kubicki JD, Zimmer J, Bonetta D, DeBolt S, Yingling YG., Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7512-7

5. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis, Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J, Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17856-61.

6. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP, Morgan, JL, McNamara, JT, Zimmer J, NSMB. 2014, May;21(5):489-96.

7. Bicelles coming of age: an empirical approach to bicelle crystallization, Poulos, S., Morgan JL, Zimmer, J, Faham, S, Methods Enzymol. 2015, 557:393-416.

8. A molecular description of cellulose biosynthesis, McNamara JT, Morgan JL, Zimmer J, Annu Rev Biochem. 2015, 84:895-921

9. Insights into the structure and function of membrane-integrated processive glycosyltransferases, Bi Y, Hubbard C, Purushotham P, Zimmer J, Curr Opin Struct Biol. 2015, Oct;34:78-86

10. Observing cellulose biosynthesis and membrane translocation in crystallo, McNamara JT, Morgan JL, Fischer M, Rich J, Chen HM, Withers S, Zimmer J, Nature, in press

____________

Prior to UVa:

____________

1.
STIM1 gates the store-operated calcium channel ORAI1 in vitro.
Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG.Nat Struct Mol Biol. 2010 Jan;17(1):112-6. doi: 10.1038/nsmb.1724. Epub 2009 Dec 27.

2.
Conformational Flexibility of the ATPase SecA Enables Peptide Interaction and Translocation.
Zimmer J, Rapoport TA.
J Mol Biol. 2009 Oct 20. [Epub ahead of print]

3.
A role for the two-helix finger of the SecA ATPase in protein translocation.
Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA.
Nature. 2008 Oct 16;455(7215):984-7.

4.
Structure of a complex of the ATPase SecA and the protein-translocation channel.
Zimmer J, Nam Y, Rapoport TA.
Nature. 2008 Oct 16;455(7215):936-43.

5.
A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA.
Zimmer J, Li W, Rapoport TA.
J Mol Biol. 2006 Dec 1;364(3):259-65. Epub 2006 Aug 22.

6.
Phospholipid requirement and pH optimum for the in vitro enzymatic activity of the E. coli P-type ATPase ZntA.
Zimmer J, Doyle DA.
Biochim Biophys Acta. 2006 May;1758(5):645-52. Epub 2006 Apr 21.

7.
Structural characterization and pH-induced conformational transition of full-length KcsA.
Zimmer J, Doyle DA, Grossmann JG.
Biophys J. 2006 Mar 1;90(5):1752-66. Epub 2005 Dec 9.

8.
Crystal structure of the potassium channel KirBac1.1 in the closed state.
Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA.
Science. 2003 Jun 20;300(5627):1922-6. Epub 2003 May 8.

9.
Increasing the diffraction limit and internal order of a membrane protein crystal by dehydration.
Kuo A, Bowler MW, Zimmer J, Antcliff JF, Doyle DA.
J Struct Biol. 2003 Feb;141(2):97-102.

Home

----------------------------------------------------------------------------------------------------------------