Trade Liberalization and Embedded Institutional Reform: Evidence from Chinese Exporters

Amit K. Khandelwal† Peter K. Schott‡ Shang-Jin Wei§

First Draft: October 2010
This Draft: September 2011

Abstract
If trade barriers are managed by inefficient institutions, trade liberalization can lead to greater-than-expected gains. We examine Chinese textile and clothing exports before and after the removal of externally imposed export quotas on January 1, 2005. When quotas are abolished, Chinese export value surges and export prices decline, largely due to net entry. This “extensive-margin” reaction is inconsistent with an allocation of quota licenses by the Chinese government solely on the basis of firm productivity. We find that productivity growth from quota removal is 27 percent higher when quotas are misallocated than if they are allocated according to productivity.

Keywords: China; Productivity; Misallocation; Quotas; Multifiber Arrangement; State-owned Enterprises

JEL Classification: F1, O1

†We thank JaeBin Ahn, David Atkin, Francisco Buera, Lorenzo Caliendo, A.V. Chari, Arnaud Costinot, Jonathan Dingel, Gene Grossman, Kalina Manova, Thomas Moore, Siddharth Sharma, Nina Pavcnik, Jonathon Vogel, Daniel Xu and seminar participants for helpful comments and suggestions. Di Fu provided excellent research assistance.
‡Columbia Business School, Uris Hall, 3022 Broadway, New York, NY 10027, tel: (212) 854-7506, fax: (212) 316-9219, email: ak2796@columbia.edu
§Yale School of Management, 135 Prospect Street, New Haven, CT 06520, tel: (203) 436-4260, fax: (203) 432-6974, email: peter.schott@yale.edu
§Columbia Business School, Uris Hall, 3022 Broadway, New York, NY 10027, tel: (212) 854-9139, fax: (212) 316-9219, email: shangjin.wei@columbia.edu
1 Introduction

Institutions that distort the efficient allocation of resources across firms can have a sizable effect on economic outcomes. Hsieh and Klenow (2009), for example, estimate that distortions in the Chinese economy reduce manufacturing productivity by 30 to 50 percent relative to an optimal distribution of capital and labor across existing manufacturers. While research in this area often concentrates on misallocation among existing firms, distortions can also favor incumbents at the expense of entrants. Trade barriers such as tariffs and quotas can obviously distort resource allocation along these “intensive” and “extensive” margins, and estimation of the productivity growth associated with their removal is a traditional line of inquiry in international trade. But gains from trade liberalization may be larger than expected if the institutions created to manage the barriers impose their own, additional drag on productivity. In that case, trade liberalization induces two gains: the first from the elimination of the embedded institution, and the second from the removal of the trade barrier itself.

In this paper, we examine the productivity gains associated with the removal of quotas on Chinese textiles and clothing exports. Under the global Agreement on Textile and Clothing, previously known (and referred to in this paper) as the Multifiber Arrangement (MFA), textile and clothing exports from China and other developing economies to the United States, the European Union and Canada were subject to quotas until January 1, 2005. In China, the licenses permitting firms to export a portion of the country’s overall quota were distributed by the government. We examine whether this allocation created an additional drag on productivity.

Our assessment of the extent to which China assigned export licenses to the most productive firms is guided by Irarrazabal et al. (2010), who introduce per-unit tariffs into the heterogeneous-firm framework of Melitz (2003) and Chaney (2008). Here, we interpret the specific tariff as a (common) quota license fee which firms must pay in order to access restricted foreign markets. This fee equates the supply and demand for quota. Firms self select into the quota-constrained export market based on their productivity, as only the most productive exporters remain profitable net of the fee.

In this “quota auction” model, removal of quotas gives rise to three empirically testable reactions. First, because per-unit license fees impose a greater distortion
on low-price goods, exports of the most productive incumbents jump relative to those of less productive incumbents. Second, because obtaining a costly export license is no longer necessary, low-productivity firms may enter the export market. Third, incumbents and entrants make opposing contributions to export prices: price declines among incumbents who no longer must pay a license fee are offset by the relatively high prices of low-productivity entrants. In all three of these reactions, the trends are dominated by incumbents.

We examine these implications using firm-level Chinese customs data. We compare the growth of previously quota-constrained Chinese textile and clothing exports to the growth of similar textile and clothing goods exported quota free. This “difference-in-differences” comparison isolates the influence of quota allocation from other factors affecting Chinese textile and clothing exports more broadly. Shipments of “cotton slips” (HS 62081920) to the U.S., for example, were subject to quotas in 2004, while exports of “silk slips” (HS 62081910), were not. Contrasting their growth in the years before and after quotas are removed controls for shocks to supply, such as privatization, or shocks to demand, such as changes in the preferences of consumers, that are plausibly common to both goods.

The data exhibit substantial deviations from the model, indicating that actual quotas were “misallocated” with respect to firm productivity.\(^1\) We show that both the strong export growth and sharp price declines associated with quota removal documented in existing studies (e.g., Brambilla et al. 2010) are driven by net entry rather than incumbents. More importantly, several trends indicate that entrants are more productive than incumbents. First, their prices are on average 25 percent and 21 percent lower than incumbents and exiters, respectively, such that net entrants account for 63 percent of the overall 18 percentage point decline in relative prices. Second, entrants tend to emerge from the private sector and gain market share at the expense of relatively unproductive incumbent state-owned enterprises (SOEs). Finally, incumbents with the highest market share under quotas experience the largest decline in market share when quotas are removed; in the model, by contrast, these incumbents possess the highest productivity and therefore benefit

\(^1\)We recognize that quota “misallocation” with respect to firm productivity may reflect maximization of other objectives of the government, such as balancing employment across regions in China. To the extent that such objectives were relevant, our results can be interpreted as measuring the cost of pursuing them in terms of exporter efficiency.
disproportionately from the removal of license fees.\textsuperscript{2}

In the second part of the paper we use the data to estimate productivity growth associated with quota removal and, via a calibration, the share of actual growth that is due to quota misallocation. Inferring productivity growth from changes in firms’ quality-adjusted export prices, we find that aggregate productivity among China’s textile and clothing exporters rose 7 percent as quotas were removed. This gain is large given that textiles and clothing represent 15 percent of China’s exports and 13 percent of its manufacturing employment. To gauge the contribution of misallocation to this gain, we consider a simple model of “political allocation” in which the government assigns export licenses according to a second firm attribute, interpreted as “political connectedness”, that need not be correlated with firm productivity. Comparison of calibrated solutions to the quota auction and political allocation scenarios indicates that 15 percent of the overall gain in productivity following quota removal is due to misallocation. Put differently, we find that productivity growth from quota removal is 27 percent higher than it would be if quotas had been allocated via an auction.

Our findings relate most directly to the growing set of papers that use microdata to estimate the effects of market distortions on existing firms (i.e., the “intensive” margin). These papers generally identify misallocation by comparing an outcome such as the firm-size or productivity distribution across countries, e.g., China versus the U.S.\textsuperscript{3} While this approach provides a great deal of valuable insight, it is necessarily coarse: any deviation between outcomes is attributed to misallocation versus other differences between countries such as variation in product mix, technology or entrepreneurial ability. Bloom and van Reenen (2007), for example, show that the distribution of the latter may vary across counties if entrepreneurs in developing countries are slow to adopt best practices. Likewise, as noted in Syverson (2011), these aggregate comparisons do not identify the particular sources of distortions. Our contribution to these efforts is threefold. First, we analyze reallocation between existing and potential exporters. Second, we identify misallocation

\textsuperscript{2}We rely on indirect evidence of entrants' relative productivity because we do not have the data to measure all exporters' TFP directly.

\textsuperscript{3}See, for example, Hsieh and Klenow (2009), Restuccia and Rogerson (2008), and Alfaro et al. (2008). Dollar and Wei (2007) investigate misallocation among Chinese firms by comparing the returns to capital across sectors and provinces in China.
using relatively weak assumptions: our difference-in-differences strategy requires only that the distribution of technology and entrepreneurial ability be identical across similar types of textile and clothing products within China, e.g., silk versus cotton slips. Finally, our approach isolates the potential distortions caused by a specific policy, quota allocation.

The effect of distortions on the extensive margin is studied most widely in the context of credit constraints in developing countries (Banerjee and Duflo, 2005). Banerjee and Duflo (2004), for example, use an exogenous change in the supply of credit to specific firms to identify constraints on obtaining credit among Indian firms. Their results suggest the existence of talented entrepreneurs who are prevented from establishing firms due to their inability to borrow from the formal banking sector. Buera et al. (2010) demonstrate that such frictions can lead to potentially large effects on aggregate productivity. Our contribution relative to these efforts is to gather data on a specific distortion affecting the extensive margin, and to use it to estimate its effects. We find that the Chinese government prevented the most productive Chinese textile and clothing firms from entering the export market, substantially reducing aggregate productivity. To the extent that such restrictions were present in other export markets, the economy-wide productivity loss associated with suppression of the extensive margin might have been quite large given the importance of exports in China’s growth.

Finally, our results contribute to a large literature examining the costs of trade protection. Standard analyses of these costs ignore misallocation along the extensive margin. An exception is Anderson (1985), who in an examination similar to ours shows that the deadweight loss associated U.S. cheese quotas is understated if they are not assigned to the lowest-cost countries. Our study is conceptually similar to Glaeser and Luttmer’s (2003) examination of rent controls in the New York housing market, where the standard deadweight loss of rationing apartments is accompanied by a further loss if apartments are not assigned to the agents with the highest valuations. In both cases, the gains from removing the distortion are amplified by eliminating the embedded institution. Our results also provide support for the idea that externally mandated changes in trade policy can ignite broader re-

\footnote{See Feenstra (1992) for a cogent summary of this research. For recent empirical studies of the MFA in particular, see Harrigan and Barrows (2009), Brambilla et al. (2010) and Bernhofen et al. (2011).}
form by enabling governments to overcome powerful domestic constituencies (Tang and Wei, 2009).

The rest of the paper proceeds as follows. Section 2 briefly presents a model of efficient quota allocation that is used to guide the empirical analysis. Section 3 offers a summary of the Multifiber Arrangement. Section 4 contains our empirical analysis. Section 6 explores alternative explanations for our findings. Section 5 describes our counterfactual analysis. Section 7 concludes.

2 Theory

This section develops a simple model of exporting under quotas to guide our empirical analysis. It assumes that quotas are allocated to the most productive exporters via an auction. We emphasize two results. We show that while the removal of quotas can induce less productive firms to enter the export market, subsequent export growth and price declines are driven overwhelmingly by the intensive margin. In demonstrating these implications, we employ calibrated numerical solutions where analytic results cannot be obtained.

2.1 Exporting Under Quotas

Our model is a re-interpretation of Irarrazabal et al. (2010), which analyzes exporting by firms with heterogeneous productivity in a trading system where importing countries implement specific (i.e., per unit) as well as ad valorem tariffs. This model is a version of the well-known monopolistic competition, love-of-variety framework developed by Melitz (2003), which does not consider specific tariffs.5

We assume that in order to export a quota-bound good from origin country o to destination country d, firms must pay a license fee (a_{od} > 0) per unit exported as well as an ad valorem tariff (τ_{od} > 1). As in Demidova et al. (2009) and Feenstra (2004), we interpret quota license fees as equivalent to per-unit increases in the cost of exporting.

---

5Given the number of papers relying on the Melitz (2003) framework, we keep our discussion of the model in this section brief. We refer the reader to our online appendix A and Irarrazabal et al. (2010) for more details.
Firm productivity is drawn from distribution $G(\varphi)$ with density $g(\varphi)$. The price of variety $\varphi$ in export market $d$ is given by

$$p_{od}(\varphi, a_{od}) = \frac{\sigma}{\sigma - 1} \omega_o \left( \tau_{od} \frac{\varphi}{\varphi} + a_{od} \right),$$

(1)

where $\sigma > 1$ is the constant elasticity of substitution across varieties and $\omega_o$ is the wage in the origin country. The existence of the final term in this expression differentiates it from its counterpart in Melitz (2003). It also provides a key intuition for our analysis: a positive license price exerts a disproportionately higher penalty on low-price (i.e., high-productivity) firms.\(^6\)

The corresponding expression for export quantity is

$$q_{od}(\varphi, a_{od}) = p_{od}(\varphi, a_{od})^{-\sigma} (P_d)^{\sigma - 1} Y_d,$$

(2)

where $Y_d$ is expenditure in the destination market and $P_d$ is a price index defined over domestic producers and origin-country exporters in the destination country. In Melitz (2003), the ratio of output produced by two firms with productivity $\varphi > \varphi'$ is independent of ad valorem trade costs. Here, this independence is broken by the addition of a specific tariff, with the result that reductions in the license fee induce relatively greater growth among low-priced firms, i.e.,

We assume that the overall size of the origin-country export quota is determined exogenously via bilateral negotiations between the two countries. Given this quota, a Walrasian auctioneer determinies the license price that induces firms to export the proper quantity, in aggregate. Intuitively, this license price will fall as the quota rises. This setup is similar to that of Anderson (1985), who demonstrates that the most efficient allocation of quotas implies a common license price.

Firms pay a fixed cost to enter the domestic market as well as the export market. A productivity cutoff, $\varphi_{od}^*$, determines the marginal exporter who is indifferent between paying the fixed costs of exporting from $o$ to $d$, $f_{od}$, and remaining a purely domestic firm,

\(^6\)In the data, firm prices may vary due to quality as well as efficiency. We discuss this issue in detail in Section 4.5.
\phi_{od}^* = \left[ \left( \frac{\sigma - 1}{\sigma} \right) \sigma^{\frac{1}{\sigma - 1}} \left( \frac{\omega_{o} f_{od}}{Y_{d}} \right)^{\frac{1}{1-\sigma}} \frac{P_d}{\omega_{o} \tau_{od} - a_{od}} \right]^{-1},

(3)

where \( P_d = P_d(\phi_{od}^*) \). Here, too, the final term differentiates this expression from the cutoff equation in a standard Melitz (2003) model: in the presence of a quota, cutoff productivity rises.

As discussed in Irarrazabal et al. (2010), there is no closed-form solution for \( P_d \) when the license price is positive. With \( P_d \) fixed (i.e., with country \( o \) too small to affect prices in country \( d \)), it is easy to verify that decreasing the quota reduces the productivity cutoff for exporting and thereby induces low-productivity firms in country \( o \) to enter the export market. This entry drags down country \( o \)'s average exporter productivity and raises its average export prices. With respect to the margins of adjustment, the overall market share of incumbent exporters declines but, among incumbent exporters, market share is reallocated towards the lowest-priced firms.

More generally, \( P_d \) may rise or fall following quota removal depending upon the distribution of firm productivity. If the productivity of the most productive firms is sufficiently high, for example, export growth by the largest incumbents’ may offset the influence of entrants on quantity-weighted average productivity, or prevent entry altogether. Assessing the impact of quota relaxation when \( P_d \) is not fixed requires numerical solutions, which we pursue in the next subsection.

### 2.2 Numerical Solutions

The model summarized above can be solved numerically to determine how export prices and quantities as well as exporter productivity evolve as quotas are removed. We provide a brief description of these solutions here, but refer the interested reader to the appendix for further detail.

We consider two countries and one industry. The parameters of the model are:

\( \sigma, L = L_{Chn}, L_{UEC}, G(\phi) \sim \ln \mathcal{N}(\mu, \theta), \tau = \{\tau_{Chn,Chn}, \tau_{Chn,UEC}, \tau_{UEC,Chn}, \tau_{UEC,UEC}\}, \)

\( f = \{f_{Chn,Chn}, f_{Chn,UEC}, f_{UEC,Chn}, f_{UEC,UEC}\}, \quad \omega = \{\omega_{Chn}, \omega_{UEC}\}. \)

We partition

\( \text{We set the domestic fixed costs } f_{Chn,Chn} \text{ and } f_{UEC,UEC} \text{ so that all firms are active in their respective domestic markets. This implies that we are choosing the ratio of the export to domestic fixed costs } \left( \frac{f_{Chn,Chn}}{f_{Chn,UEC}} \text{ and } \frac{f_{UEC,Chn}}{f_{UEC,UEC}} \right) \text{ to match the fraction of textile and clothing exporters in each} \)
this set by imposing values for some parameters and choosing the remaining parameters by matching particular statistics in the data. We assume that the two countries have identical sizes $L_{UEC} = L_{Chn} = 100$.\footnote{As discussed below, we consider the quotas imposed by the U.S., Canada and the E.U. (the “UEC”), whose total population (900 million) is relatively close to that of China (1.2 billion).} We choose an elasticity of substitution, $\sigma = 4$, that is the median among the apparel and textiles elasticities estimated in Broda et al. (2006). We assume a log normal productivity distribution, $G(\varphi) \sim \ln \mathcal{N}(\mu, \theta)$. We set the wage in each country equal to unity; although this assumption appears strong, it simply implies that that the iceberg and fixed trade costs that we match to the data capture variation in wages as well as trade costs. We jointly choose the log normal mean and standard deviation, the two iceberg trade costs ($\tau_{Chn,UEC}$ and $\tau_{UEC,Chn}$) and the ratios of exporting to domestic fixed costs to match the following features of the data: the distribution of exports among Chinese textile and clothing exporters, the share of Chinese textile and clothing producers that export and the Chinese and U.S. market shares of U.S. and Chinese textile and clothing consumption in 2005, respectively.\footnote{China’s Annual Survey of Industry reports that 44 percent of firms in the textile and clothing sectors (Chinese Industrial Classifications 17 and 18) exported in 2005. The share exports accounted for by the 75th, 90th, 95th, 99th and 99.9th percentiles of these exporters are .26, .46, .59, .80, .93 and 1, respectively. We were unable to obtain import penetration figures and fraction of textile exporters for Canada and the EU, so we use the US data to determine the trade cost parameters. According to textile and clothing production and trade data in the Annual Survey and Chinese customs data, respectively, the U.S. market share of Chinese textile and clothing (China Industrial Classification codes 17 and 18) consumption is 1.2 percent. According to the NBER Productivity Database, the Chinese market share of U.S. apparel and textile consumption (NAICS codes 313, 314 and 315) is 13.1 percent. All data are from 2005 because that is the first post-quota year.} The resulting parameters are $\mu = 1.28$, $\theta = 0.54$, $\tau_{Chn,UEC} = 1.80$, $\tau_{UEC,Chn} = 3.55$, $f_{Chn,UEC}/f_{Chn,Chn} = 1.15$ and $f_{UEC,Chn}/f_{UEC,UEC} = 1.15$.

Using these parameters, we solve for the export productivity cutoffs ($\varphi_{Chn,UEC}^*$ and $\varphi_{UEC,Chn}^*$) and domestic price indexes ($P_{UEC}$ and $P_{Chn}$) in each country in a no-quota equilibrium, i.e., where the license price is set to zero. We then re-solve the model for a positive, common license price that yields the the 2004 level of observed “quota restrictiveness”, which we define as 1 minus the ratio of exports under quotas to exports without quotas. In the data, the median growth of Chinese exports of quota-restricted goods relative to unrestricted goods was 155 percent market. We assume iceberg trade costs are equal to 1 within countries, ($\tau_{Chn,Chn} = \tau_{UEC,UEC} = 1$).
in 2005 relative to 2004, implying a quota restrictiveness of 0.61 (1-1/2.55).\(^{10}\) We refer to this solution as the “quota auction” allocation of the quota licenses.

Table 1 compares numerical solutions of the model under the quota-auction and no-quota scenarios. The first two rows of the table compare the price indexes of the two countries. As expected, \(P_{US}\) declines with the removal of quotas, by 2 percent. This price decline is a function of the reallocation of exports to higher-productivity firms and the removal of the license fee. The entry of low-productivity firms is manifest in the decline of average productivity by 5 percent in row three, while the more-than-offsetting expansion of high-productivity firms is evident in the 24 percent increase of weighted average productivity in row four.\(^{11}\) Similar movements occur in export prices in rows five through seven, where we find incumbents account for all of the 29 percent decline in Chinese export prices following quota removal. The remaining rows of the table document the disproportionate growth of the highest-productivity incumbents: while the largest 25 percent of firms see their market share rise 17 percent, the market share of the top 1 percent of firms grows 82 percent. Despite the entry of new exporters, incumbents only lose 1 percent of their market share (1 - 23.88/24.13) when the quotas are removed. This small loss of incumbent market share is an important implication of the auction allocation; its empirical analogue serves as a key moment in our calibration of “political” allocation in Section 5.

3 A Brief Summary of the MFA

China’s textile and clothing industry accounts for a substantial share of its overall economy. In 2004, it employed 12.9 million workers, or 13 percent of total manufacturing employment (2004 China Economic Census). China’s textile and clothing

\(^{10}\)This 155 percent growth rate is relative to quota-unconstrained textile and clothing exports as well as to export growth of both types of exports in 2004, i.e., a “triple” difference that is explained in greater detail in Section 4.3. We assume this measure of quota restrictiveness is independent of whether quotas are allocated efficiently or inefficiently in 2004.

\(^{11}\)As noted in Irarrazabal et al. (2010), the large gains associated with the removal of licensing fees exceed those implied by traditional trade models that solely consider the removal of iceberg transportation costs (e.g., the class of trade models discussed in Arkolakis et al. 2010). The size of the gain is also sensitive to the distribution from which productivity is drawn. As discussed further in footnote 32, if we follow the same procedure to solve the model using a Pareto distribution for firm productivity, we find a weighted-average productivity gain of 58 percent.
exports account for 15 percent of the country’s overall exports, and 23 percent of world-wide textile and clothing exports (which equaled $487 billion in 2005).

The Multifiber Arrangement (MFA) and its successor, the Agreement on Textile and Clothing (ATC), grew out of restraints imposed by the U.S. on imports from Japan during the 1950s. Over time, it evolved into a broader institution that regulated the exports of clothing and textile products from developing countries to the U.S., E.U., Canada, and Turkey. (We drop Turkey from the analysis because we are unable to locate the list of products covered by its quotas; in 2004, textile and clothing exports to Turkey accounted for less than 0.5% of China’s total textile and clothing exports.) Bargaining over these restrictions was kept separate from multilateral trade negotiations until the conclusion of the Uruguay Round in 1995, when an agreement was struck to eliminate the quotas over four phases. At the beginning of 1995, 1998, 2002 and 2005, the U.S., E.U. and Canada were required to remove textile and clothing quotas representing 16, 17, 18 and the remaining 49 percent of their 1990 import volumes, respectively. The order in which goods were placed into a particular phase varied across importers, with each country generally choosing to place their most “sensitive” textile and clothing products into the final phase (Phase IV) to defer politically painful import competition as long as possible (Brambilla et al. 2010). This aspect of the liberalization suggests that the quotas were most binding at the final removal of quotas in 2005. However, the fact that Phase IV goods were determined in 1995 implies that their choice was not influenced by demand or supply conditions in 2005.\footnote{The large increase in exports following quota removal in 2005 might be driven in part by firms’ expectations that the MFA would be succeeded by another form of quantitative restrictions: by boosting exports, firms may have been hoping to receive a higher allocation under the new regime. In fact, the U.S. and E.U. reimposed safeguard quotas on a subset of products in 2005. We have been unable to determine the products subject to safeguards in the E.U., but we find that our results are unchanged if we exclude products subject to safeguards in the U.S. market in 2005.}

China did not become eligible for quota removal until it joined the WTO at the end of 2001. In early 2002, its quotas on Phase I, II and III goods were relaxed immediately. Removal of quotas on Phase IV goods — the focus of our empirical work — occurred according to schedule on January 1, 2005.\footnote{The removal of quotas coincided with China’s obligation under its WTO accession agreement to eliminate export licensing in all products by 2005. The products that were subject to state trading and designated traders are listed in Appendix 2A2 and 2B of China’s WTO accession.

\begin{footnotesize}
\item[12] China did not become eligible for quota removal until it joined the WTO at the end of 2001. In early 2002, its quotas on Phase I, II and III goods were relaxed immediately. Removal of quotas on Phase IV goods — the focus of our empirical work — occurred according to schedule on January 1, 2005.\footnote{The large increase in exports following quota removal in 2005 might be driven in part by firms’ expectations that the MFA would be succeeded by another form of quantitative restrictions: by boosting exports, firms may have been hoping to receive a higher allocation under the new regime. In fact, the U.S. and E.U. reimposed safeguard quotas on a subset of products in 2005. We have been unable to determine the products subject to safeguards in the E.U., but we find that our results are unchanged if we exclude products subject to safeguards in the U.S. market in 2005.}
\end{footnotesize}
Like other countries under the MFA and ATC, China officially allocated quotas on the basis of past performance, i.e., firm's ability to export their quota successfully in the previous year (Krishna and Tam 1998). As documented in Moore (2002), however, China's actual allocation of quotas deviated from this principle, at times substantially. In the 1980s in particular, rent-seeking and political favoritism were rampant. Firms managed by individuals affiliated with the People's Liberation Army, for example, received quotas in return for their support of the government, and these allocations were increased in 1989 following the army's backing of the state during the Tiananmen crisis. Likewise, there is evidence that the central Ministry of Commerce provided quota allocations to provincial authorities in an effort to promote textile and clothing manufacturing geographically (Ministry of Foreign Trade and Economic Cooperation 2001). Our analysis is unable to identify the precise objective function that the government sought to maximize, but by considering the deviation in the actual quota assignment from one that assigned quotas on the basis of firm productivity, our analysis quantifies the cost of pursuing an allocation of quotas based on alternative criteria.

Although trading quotas in China was illegal throughout the MFA, anecdotal evidence suggests that an active black market emerged during the 1980s. One consequence of the difficulties associated with firms' inability to trade quotas legally was unused quota. To prevent quota from going unused, the government stepped up enforcement of allocations based on past performance, and tried to prevent non-producing firms from receiving quotas (Moore 2002). These reforms are generally believed to have reduced black-market activity, though verification of this claim is difficult given firms' (understandable) reluctance to discuss illegal trading (Moore 2002; interviews conducted by the authors). The illegality of a secondary market is likely to have frustrated the resale of quotas, implying that quotas may not have found their way to agents who valued them the most. The potential sensitivity of our results to legal or illegal subcontracting, as well as empirical exercises designed to measure it, are discussed further in Section 6.

Starting in 2000, the government experimented with auctioning up to 30 percent of the total quota allocation of a subset of MFA goods. To bid in these auctions, document (WT/ACC/CHN/49), respectively. In 2004, these products account for just 1 percent of total textile and clothing export value to the U.S., E.U. and Canada in 7 percent of the product codes. The results of our analysis are unchanged if we exclude these products from the analysis.
however, firms were required to win approval from the government. Unfortunately, we have been unable to determine the precise criteria governing approval, though we do know that entry into the bidding process required official permission. We do not know the criteria for obtaining permission to bid on quota licenses.

4 Reallocation Following Quota Removal

The model developed in Section 2 highlights three empirical implications of quota removal: a reallocation of export market share towards the largest, most productive incumbents; a reduction in incumbents’ export prices due to the removal of license fees; and the entry of less-productive but higher-priced exporters. We find that these predictions are not supported by the data.

4.1 Data

Our empirical analysis relies on data from several sources. The first is Chinese customs data by firm, eight-digit Harmonized System (HS) category and destination country. For each firm-product-country observation, we observe the total nominal value and quantity exported as well as whether firms fall into one of three ownership categories: state-owned enterprises (“SOEs”), domestically owned private firms (“domestic”) and foreign-invested private firms (“foreign”). Quantity units are available for 99 percent of observations accounting for the same share of export value, and vary across products, e.g., dozens of shirts or square meters of fabric. We combine the nominal value and quantity data to construct nominal unit values, also referred to as “prices”.

We focus on China’s exports of textile and clothing products to the U.S., Canada and the E.U., treating the latter as a single block of countries given that quotas are set for the union as a whole. Product-country pairs are partitioned into two groups. The first, referred to as “MFA” product-country pairs, encompass textile and clothing products bound by quotas until 2004. The remaining product-country pairs, referred to as “OTC”, for “other textile and clothing”

\[\text{We classify "state-owned" firms as SOEs; "collective-owned", "other" and "private domestic" firms as domestic, and "foreign-exclusive owned" and two joint venture classifications as foreign.}\]
product-country pairs, consist of textile and clothing products exported quota-free.\textsuperscript{15} Because our classification refers to product-country pairs, it is possible for a given HS product to be both MFA and OTC depending upon its destination. For example, a textile and clothing product subject to a quota only in the U.S. \textit{exported to the U.S.}, is MFA, but if it is \textit{exported to the E.U.}, is OTC.\textsuperscript{16} Among the 547 products that are subject to quotas by any of the U.S., the E.U. or Canada, 157 are subject to quotas by all three destinations, while 167, 63, and 4 are subject to quotas solely in the U.S., solely in the E.U. and solely in Canada, respectively.

We assess the extent to which quotas were allocated to the most productive firms by examining changes in MFA exports before and after quotas were removed on January 1, 2005 using outcomes in OTC as well as prior years as controls. These comparisons capture broad trends affecting China's textile and clothing exports during this period, such as improvements in productivity or privatization, and our ability to make use of them is a unique advantage of our analysis.

A more direct approach to identifying misallocation of quotas would be to compare the estimated TFP of firms assigned quotas in 2004 to those which export freely in 2005. In principle, this comparison could be accomplished by matching firms’ trading behavior in the customs data to information on their output and inputs recorded in China’s annual survey of manufacturing collected by the National Bureau of Statistics (NBS). In practice, matching these two datasets is difficult.\textsuperscript{17}

\textsuperscript{15}Textile and clothing products are defined as: two-digit HS chapters 50-63; four-digit HS chapter 6406; five-digit HS chapters 30059, 65059 and 94049; and six-digit HS chapter 701919. MFA products are a subset of these HS chapters and are defined according to a concordance made available by the Embassy of China’s Economic and Commercial Affairs office which identifies the set of products subject to quotas in each destination market in 2004. Note that some products in the OTC category were subject to quotas that were removed in 2002 under earlier phases of the quota liberalization. Comparisons of the trends noted in the text to goods outside of textiles and clothing, as well as textile and clothing exports to the rest of the world, appeared in an earlier version of this paper and are available upon request.

\textsuperscript{16}A particular firm may appear in more than one group if it exports to multiple countries or if it exports more than HS category. We find that 86 percent of MFA firms in 2004 export at least one of their MFA HS categories to at least one quota-free country (e.g., Japan). These firms represent 77 percent of MFA export value in 2004. The comparable figure for OTC firms and OTC export value are 40 and 65 percent, respectively.

\textsuperscript{17}Matching must be done using firm names rather than numerical identifiers. We have succeeded in matching 9,558 (31 percent) of the 2005 MFA and OTC exporters to the NBS. These exporters account for 35 percent of total MFA and OTC export value. By ownership type, we match 9 (6), 19 (30) and 58 (77) percent of SOE, domestic and foreign firms (value), respectively. We suspect that very low match rate for SOEs is due to their use of a trading division to export.
Another alternative would be to use the indicator for firms’ export status in the NBS to determine their participation in quota-constrained export markets. Unfortunately, this indicator cannot be used to distinguish between MFA and OTC exports because it neither records the countries to which firms export nor the specific HS codes exported. The only industry information available in the NBS is a code for firms’ major line of business.

4.2 Export Growth Following Quota Removal

Chinese export growth in 2005 is disproportionately large for textile and clothing goods released from quotas, and generally occurs at the expense of state-owned enterprises.

As indicated in the top panel of Table 2, MFA product-countries registered a 307 percent increase in export value between 2000 and 2005. By comparison, export growth is 205 percent for OTC and 236 percent for Chinese exports as a whole. MFA’s differentially large growth is due primarily to the 119 percent jump in export value that occurs in 2005, the year that quotas are removed. Its annual growth in prior years, by contrast, averages just 17 percent.\(^{18}\)

Data in the lower panel of Table 2 indicates that the surge in MFA export value in 2005 is accompanied by a 96 percent increase in the number of MFA exporters. Here, too, this jump is large relative to prior years as well as the 39 percent increases in OTC exporters over the same period. This relative growth in the number of exporters provides the first indication of the potential importance of the extensive margin in MFA’s response to quota removal. We also find that MFA export growth is uneven across ownership types: SOEs account for 54 percent of MFA in 2004 versus 44 percent for OTC. Once quotas are removed, Table 3 shows that this gap falls markedly: in 2005, SOEs’ market share is 38 percent in MFA and 36 percent in OTC. Together, these facts highlight three trends about

---

\(^{18}\)U.S., E.U. and Canadian quotas on China’s MFA export quantities grew an average of 2 to 3 percent per year once China was admitted to the WTO in December 2001 (Brambilla et al. 2010). The relatively high value growth displayed before 2004 in Table 2 reflects a combination of this growth in quantity as well as sizable increases in prices.
MFA exports following quota removal. First, MFA export growth is relatively high compared to previous years and to OTC, indicating that MFA quotas were binding. Second, growth in MFA export value is accompanied by a similarly large increase in the number of MFA exporters, which suggests a prominent role for the extensive margin. Finally, the reallocation of market share away from publicly owned SOEs and towards privately owned domestic and foreign firms suggests that SOEs may have received an excessive level of quota under the MFA.

The transfer of MFA market share between ownership types can be used to compute a coarse, back-of-envelope estimate of the productivity gain associated with the replacement of SOEs by privately owned firms. Using the annual survey from the NBS we compute the relative productivity of exporters by firm ownership type, restricting our comparison to exporters in 2005 whose major line of business is textiles or clothing (industry codes 17 or 18). Figure 1 plots the resulting distributions of textile and clothing exporters’ TFP relative to the hypothetical average textile and clothing firm by type of ownership. SOE exporters’ distribution lies clearly to the left of the distributions of privately owned exporters. The first column of Table 4 reports each ownership type’s TFP relative to the hypothetical mean from Figure 1. On average, SOEs are 18 percent less productive than the hypothetical mean exporter, while privately owned domestic and foreign exporters are 88 and 72 percent more productive. These estimates are consistent with broader measures of TFP differences among state- and privately owned firms found by Brandt and Zhu (2010) and Hsieh and Klenow (2009). The second column reports the relative changes in each ownership type’s market share between 2004 and 2005. Multiplying through, we find that the reallocation of market shares observed in 2005 implies an increase in exporters’ TFP of 13.5 percent. This estimate relies on the strong assumption that firm productivity is constant within ownership types, which is at odds with Figure 1 and additional evidence on export prices presented.

\[ \ln(TFP_f) = (v_{af} - \bar{v}_f) - \bar{s}_f (w_f - \bar{w}) - (1 - \bar{s}_f) (k_f - \bar{k}) \]

where \( v_{af}, w_f, \) and \( k_f \) are in logs and denote firm value added, wages and fixed assets (net of depreciation), \( \bar{s}_f = (s_f + \bar{s}) / 2 \), \( s_f \) is the share of wages in total value added, and where a bar over a variable denotes an average across all textile and clothing exporters. TFP for each firm is relative to a hypothetical firm with the average output and inputs. Wages are defined as reported firm wages plus employee benefits (unemployment insurance, housing subsidies, pension and medical insurance), and capital is defined as reported capital stock at original purchase price less accumulated depreciation.
below. Below, we derive an alternate estimate of aggregate productivity growth associated with quota removal that relaxes this assumption.

4.3 Margins of Adjustment

We find that export growth following quota removal favors privately owned entrants primarily at the expense of incumbent SOEs.

Export growth can be decomposed into one intensive and two extensive margins. The intensive margin is populated by incumbents, by which we mean eight-digit HS products exported by the same firm to the same country in both 2004 and 2005. The extensive margin is comprised of entrants and exiters. Entrants are firm-product-country triplets which appear in 2005 but which were not present in 2004. Exiters exhibit the opposite pattern. Given these definitions, multiple-product exporters may be counted in more than one margin of adjustment, e.g., they may exit one product-country and enter another.

We examine reallocation in terms of quantity- rather than value-based market share due to the large price changes documented in the next section. Under the null hypothesis of efficient allocation, export growth following quota removal should be concentrated among the largest incumbents due to their (presumed) greater productivity. Instead, we find the opposite. Figure 2 plots the locally weighted least squares relationship between incumbents market share within their product-country pair in 2004 and their change in this market share between 2004 and 2005. Separate relationships are plotted for each ownership type, by group. The negative relationships across ownership-group pairs likely reflects mean reversion. However, this decline is more pronounced in MFA that OTC, and most severe for SOEs within MFA. This result provides further indication that SOEs received excessive allocations under quotas.\textsuperscript{20}

A formal decomposition of 2004 to 2005 MFA quantity market share reallocation by margin of adjustment is presented in the first panel of Table 5. It is constructed by determining the quantity market share of each margin ($m$) within

\textsuperscript{20}We note that the strong role of the extensive margin might be explained by capacity constraints among incumbents as quotas are removed. While this explanation is plausible, it seems unlikely given that the dates of quota removal were known ten years in advance, providing incumbents with ample time to prepare.
each product-country pair \((hc)\) in each year, 
\[
\Theta_{mhc} = \left( \sum_{f \in m} q_{fhct} / \sum_{m} \sum_{f} q_{fhct} \right),
\]
taking the difference between years and then averaging these differences across the
product-country pairs. Differences are in bold if they are statistically significantly
different from zero at the 10 percent level.

The left panel of Table 5 summarizes the “single-difference” shift in market
share from incumbents to net entrants within MFA from 2004 to 2005 as quotas
are removed. Entrants are decomposed into “new exporters”, which are firms that
did not export at all in 2004, and “adders”, which are firms that exported one or
more other (potentially MFA) products in 2004 prior to adding an MFA product in
2005.\(^{21}\) Incumbents’ market shares decline by an average of 21 percentage points
across product-destination pairs in the year quotas are removed. This decline is
(necessarily) offset by a 21 percentage point average gain by net entrants, for an
overall average change of zero. Of this 21 percentage-point gain, adders and new
exporters contribute 65 and 6 percent, respectively, while exiters account for -50
percent.

The remaining columns of the left panel of Table 5 decompose the overall
“single-difference” change in MFA market share for each margin by type of firm
ownership. Each row sums to the value in the first column of the panel. Two
trends stand out. First, there is substantial gross reallocation of market share
within each ownership type. This gross reallocation emphasizes firm heterogeneity
within each type of ownership and is most pronounced among SOEs, where the
relatively high 32 percent market share lost by exiters is offset by a 26 percent
market share gain by adders. Second, there is a net 21.9 percent reallocation of
market share from SOEs to privately owned domestic (13.4 percent) and foreign
(8.5 percent) entrants.\(^{22}\) Together, these gross and net reallocations suggest that
the “excessive” quota enjoyed by some state-owned enterprises in 2004 came at the
expense of both other SOEs as well as privately owned firms.

The “single” differences reported in the left panel of Table 5 do not reveal the

\(^{21}\)A given firm may contribute to both the intensive and “adder” extensive margins if it both
continues exporting at least one MFA product between 2004 and 2005 and adds another MFA
product during that interval. For more detail, see the Data Appendix.

\(^{22}\)Price changes explain the difference between the 21 percent decline in SOEs average quantity-
based market shares in Table 5 and their 16 percent decline in value-based market share in Table
3.
extent to which 2004 to 2005 changes in MFA margins’ market shares deviate either from changes in OTC over the same period, or from these groups’ changes in the prior period. Such “triple” differences control for factors common to Chinese textile and clothing products over time such as the removal of entry barriers and the broad-based decline of SOEs. Triple differences are estimated via the following product-country level OLS regression:

$$
\Delta \Theta_{mhc} = \alpha_0 + \alpha_1 \{t=2005\} + \alpha_2 \{hc \in \text{MFA}\} + \alpha_3 \{t=2005\} \times 1\{hc \in \text{MFA}\} + \epsilon_{mhc},
$$

where $1\{t=2005\}$ and $1\{hc \in \text{MFA}\}$ are indicators for 2005 and the presence of a product-country pair in group MFA, respectively. The sum of all four coefficients equals the “single” differences reported in the left panel of Table 5. By itself, $\alpha_3$ represents the triple differences reported in the right panel of Table 5. Complete regression results are reported in Appendix Table 10.

Triple differences convey the same basic message as the single differences, i.e., a strong reallocation of market share away from incumbent SOEs and towards privately owned entrants. This reallocation is inconsistent with quota removal under the auction quota model developed in Section 2 as well as the relatively high apparent productivity of entrants discussed below.\textsuperscript{23}

### 4.4 Prices

MFA export prices fall substantially when quotas are removed, largely due to net entry.

We compute the change in groups’ export prices in two steps. First, for each product-country ($hc$) pair in each year ($t$), we calculate a weighted-average export price ($P_{hct}$) across all firms’ log export unit values, $\ln(p_{fht})$, using their quantity

\textsuperscript{23}In unreported results (available upon request), we find even stronger reallocation from SOE incumbents to privately owned entrants among product-country pairs where quotas are binding, i.e., where fill rates exceed 90 percent. Data on U.S., E.U. and Canadian fill rates are obtained from OTEXA, Système Intégré de Gestion de Licenses, and Foreign Affairs and International Trade Canada, respectively. We also find virtually identical triple-difference results after including product and country fixed effects, which control for trends in prices and identify changes within these groups between 2003 to 2004 and 2004 to 2005.
market shares ($\theta_{f_{hc}}$) as weights\textsuperscript{24},

$$
\bar{P}_{hc} = \sum_f \theta_{f_{hc}} \ln(p_{f_{hc}}).
$$

(5)

Then, for each product-country pair, we compute the change in this log price between years,

$$
\Delta \bar{P}_{hc} = (\bar{P}_{hc} - \bar{P}_{hc-1}).
$$

(6)

Each bar in Figure 3 displays the mean of $\Delta \bar{P}_{hc}$ across all product-country pairs in MFA and OTC for 2004 and 2005. As indicated in the figure, MFA export prices on average fall 0.179 log points, while OTC exports on average rise 0.065 log points. The MFA decline is also sharp relative to the group’s average price growth of 0.01 log points in 2004.

Variation in normalized log export prices among MFA incumbents, entrants and exiters is displayed visually in Figure 4, which plots incumbents’ and entrants’ normalized 2005 export log prices and exiters’ normalized 2004 log prices. In both cases the normalization involves subtracting off the across-year log mean price for product-country $hc$:

$$
\bar{P}_{hc} = \frac{1}{2} (\bar{P}_{hc} + \bar{P}_{hc-1}).
$$

(7)

Firms whose relative prices are below and above the first and ninety-ninth percentiles of each distribution, respectively, are removed from the figure to increase readability.

The ordering of the price distributions, with entrants to the left and exiters to the right, indicates that firms exiting MFA in 2004 have relatively high prices compared to 2005 entrants. On average, entrants’ prices are 0.25 and 0.21 log points lower than incumbents’ and exiters’ prices, respectively. By comparison, the top and bottom panels of Figure 5 reveal that we do not find a similar ordering of entrants’ and exiters’ prices either contemporaneously in OTC or in MFA the year before. A second notable feature of Figure 4 is MFA incumbents’ relatively

\textsuperscript{24}We use log prices to minimize the influence of outliers and to facilitate decomposition of observed prices into quality-adjusted prices below. Results are qualitatively similar if we drop outliers, i.e., product-country groups with the highest and lowest 1 percent of price changes.
thin left tail. This paucity of very low prices provides intuition for the loss of
market share by incumbents discussed in the previous section. Indeed, incumbents’
ability to retain as much market share as they did given their relatively high prices
may be due market or policy asymmetries such as long-term contracts or better
marketing information that give high-priced incumbents an advantage over low-
priced entrants.

We quantify the relative importance of each margin in MFA price changes using
a technique for productivity decomposition proposed by Foster et al. (2008) and
Griliches and Regev (1995):

\[ \Delta \bar{P}_{htc} = \frac{1}{\bar{P}_{htc-1}} \left[ \sum_{f \in I} \bar{\theta}_{fhtc} \left( \ln(p_{fhtc}) - \ln(p_{fhtc-1}) \right) + \sum_{f \in I} (\theta_{fhtc} - \theta_{fhtc-1}) \left( \bar{P}_{fhtc} - \bar{P}_{htc} \right) \right] \\
+ \frac{1}{\bar{P}_{htc-1}} \left[ \sum_{f \in N} \bar{\theta}_{fhtc} \left( \ln(p_{fhtc}) - \bar{P}_{htc} \right) \right] - \frac{1}{\bar{P}_{htc-1}} \left[ \sum_{f \in X} \theta_{fhtc-1} \left( \ln(p_{fhtc-1}) - \bar{P}_{htc} \right) \right]. \tag{8} \]

As above, \( \theta \) represents quantity-based market share and \( f, h \) and \( c \) index exporters,
eight-digit HS categories and countries, respectively. \( I, N \) and \( X \) correspond to
the sets of incumbent, entering (new exporters plus adders) and exiting firms,
respectively. (We forgo breaking entrants into adders versus new exporters given
the relatively small market share of the latter in Table 5.) \( \bar{\theta}_{fhtc} \) is the average market
share of firm \( f \) in \( hc \) across years, i.e., \( \bar{\theta}_{fhtc} = (\bar{\theta}_{fhtc} + \bar{\theta}_{fhtc-1}) / 2 \). Finally, \( \bar{p}_{fhtc} = \frac{1}{2} (\ln p_{fhtc} + \ln p_{fhtc-1}) / 2 \) is the across-year average price of firm \( f \) in product-
country \( hc \). Like \( \bar{\theta}_{fhtc} \), it can be computed only for incumbents.

The first term in square brackets captures the intensive margin. Its first,
“within” component measures the price change of incumbent exporters holding
their market share fixed. Its second, “across” component accounts for changes in
incumbents’ market shares, weighting those changes by the difference between a
firm’s average across-year price and the overall average across-year price. If inc-
cumbents’ prices fall with the quota fee, the within component is negative. If
incumbents’ prices are relatively high and their market shares tend to decline, the
across component is also negative and both components contribute to a reduction

21
in $\Delta \bar{P}_{het}$.

The second term in square brackets in equation (8) captures the entry margin; this term is negative if entrants’ prices are lower than the across-year average price. The third term in square brackets captures the exit margin. Its interpretation is analogous to the entry term, as it is positive if exiters have relatively high prices compared to the across-year average. Note that because the exit margin is subtracted from the previous two margins, positive values make a negative contribution to the overall price change.

We use regressions analogous to equation (4) to estimate single- and triple-difference price decompositions. Complete regression results are reported in Appendix Table 11 and are summarized in the two panels of Table 6 using the same format as with market shares above. Here, triple differencing controls for inflation (our value data are nominal) as well as other factors such as changes in technology and exchange rates that affect the prices of all Chinese textile and clothing export prices equally.

As results for single and triple differences are quite similar, we discuss the latter. We find that incumbents are responsible for just over one-third (37 percent) of the average 0.179 relative log point decline in MFA export prices in 2005. The within and across components of this adjustment reveal that most of this drop is due to loss of market share by relatively high-priced incumbents (-0.042) versus price declines (-0.025), but that both are sizable. The extensive margin accounts for the remaining 63 percent of the overall price decline, with entrants’ relatively low prices and exiters relatively high prices contributing 39 and 24 percent on average, respectively.

More so than with market share changes, price changes are the result of both gross and net reallocations within and across ownership types. Price declines and loss of market share by incumbent SOEs account for one-fourth over the overall drop in prices (-0.052/-0.179). Net entry by SOEs not favored by quota allocation in 2004 contributes another fourth (-0.51/-0.179), with entry and exit contributing roughly equal amounts. Finally, entry by low-priced privately owned firms contributes another third (-0.062/-0.179). To the extent that low prices reflect high productivity, these trends are inconsistent with allocation of quotas to the most productive firms under the MFA.
4.5 Quality, Quality-Adjusted Prices and Productivity

Long-standing research on quotas discusses firms’ incentives to increase product quality when quotas are imposed and decrease it when they are removed (Aw and Roberts 1986, Feenstra 1988 and Boorstein and Feenstra 1991). This incentive comes from the relatively high penalty quotas exert on low-price – here interpreted as low-quality – goods. From a quality perspective, the relative price declines documented above may reflect quality downgrading by incumbents and the entry and exit of low- and high-quality textile and clothing varieties, respectively.

We estimate export “quality” \( (\lambda_{fhct}) \) by embedding preference for it in the CES utility function used in above: \( U = \left( \int_{\omega \in \Omega} (\lambda(\omega)q(\omega))^{(\sigma-1)/\sigma} d\omega \right)^{\sigma/(\sigma-1)} \). With these preferences, demand for a particular firm’s export in destination country \( c \) is given by:

\[
q_{fhct} = \lambda_{fhct}^{\sigma-1}P_{dhct}^{\sigma-1}Y_{dt}.
\]

Taking logs and using the elasticity of substitution \( \sigma = 4 \) from Section 2.2, we use the residual from the following OLS regression to infer quality:

\[
\ln q_{fhct} + 4 \ln p_{fhct} = \alpha_h + \alpha_{ct} + \epsilon_{fcht},
\]

where \( \hat{\lambda}_{fctd} \equiv \hat{\epsilon}_{fcht}/(\sigma - 1) \). The intuition behind this approach is similar to that in Hummels and Klenow (2005), Khandelwal (2010), Hallak and Schott (2011) and Feenstra and Romalis (2011): conditional on price, a variety with a higher quantity is assigned higher quality.\(^{25}\) By imposing the same elasticity of substitution across textile and clothing products, we avoid having to estimate demand before inferring quality. In our estimation, \( \alpha_{ct} \) collects both the destination price index \( (P_{ct}) \) and

\(^{25}\)We infer quality from the demand side and do not specify a model that accounts for firm quality choice (e.g., Kugler and Verhoogen (forthcoming) and Johnson (2010)). Here, quality is defined very broadly: it is anything that raises consumer demand for a product other than price. This method for inferring quality downgrading within products, also used by Broda and Weinstein (2010), differs from the across-product approach adopted by Harrigan and Barrows (2009) and developed by Aw and Roberts (1986) and Boorstein and Feenstra (1991). In their approach, quality downgrading is defined as a shift in consumption from high- to low-priced HS categories over time, as identified by a relative decrease in a quantity-weighted versus value-weighted average price index. We follow our approach to identify quality changes because across-product evidence of quality downgrading does not account for quality changes within HS categories or within firms, which our data can address directly.
income \((Y_{ct})\). The product fixed effect \(\alpha_h\) is included because prices and quantities are not necessarily comparable across product categories. The quality-adjusted price is the observed log price less estimated quality, which is already in logs.

Table 7 decomposes MFA quality changes by margin of adjustment and ownership type using the same format as previous decompositions. The single-difference results in the left panel indicate an average increase in overall MFA quality across \(hc\) pairs of 0.044 log points. Consistent with the quota literature, however, the triple-difference results in the right panel indicate an average decline in relative MFA quality of -0.109 log points. SOE and privately owned domestic firms are the major source of this decline: they account for half of the overall drop \((-0.052/-0.109)\) and their contribution is statistically significant. While the results in the remaining cells of the table are consistent with low-quality entrants replacing high-quality exiters, they are not statistically significant except for the combined net entry of privately owned domestic firms, which accounts for another third of the overall decline \((-0.032/-0.109)\).

Subtracting the decomposition in Table 7 from the decomposition in Table 6 yields the decomposition of quality-adjusted prices reported in Table 8. The triple differences in the right panel of the table reveal that MFA prices continue to exhibit a statistically significant relative price decline of -0.070 log points even after adjusting for quality. Likewise, net entry by low-price firms of each ownership type continues to account for a substantial and (jointly) statistically significant portion \((-0.055/-0.070)\) of this overall decline. In fact, the extensive margin’s contribution to the decline in quality-adjusted price changes (79 percent) is even higher than its contribution to observed price changes (63 percent; Table 6).

As indicated in the pricing rule from Section 2.2 (equation 1), changes in inverted quality-adjusted prices provide information about changes in firm productivity. Assuming the Chinese government awarded quotas without charging a fee from recipients (i.e., \(a_{\text{China,US}} = 0\)), the quality-adjusted price changes reported in Table 6 indicate that quota removal coincides with an average 0.070 log point increase in productivity across \(hc\) pairs.\(^{26}\) While this productivity growth is consistent with the model of quota removal in Section 2.2, entrants’ contribution to it starkly violates the implication that new exporters be of lower productivity.

\(^{26}\)Since the price changes are in logs, multiplying through by \(-1\) yields productivity.
than incumbents. More than half of the total gain in productivity is due to entry (0.039/0.070), with SOEs and privately owned domestic firms contributing most of it. This estimated 0.070 log point gain in productivity is large relative to other estimates in the literature.\textsuperscript{27} Brandt and Zhu (2010), for example, estimate average annual TFP growth of 4 percent for non-agricultural industries over 1998 to 2007.

The growth in productivity revealed by changes in quality adjusted prices represents the total gain in moving from actual allocation quotas to no quotas. As we do not observe exports under the auction assumed in our model, we make use of numerical solutions to the model to separate this gain into the part due to misallocation versus the part accounted for by the removal of the quota.

5 Decomposing Productivity Gains

Results in Section 4 indicate that Chinese quota was not allocated to exporters according to productivity. To determine the share of the overall productivity gain among exporters induced by the removal of the embedded licensing regime requires a model of the actual allocation mechanism used by the government.\textsuperscript{28} As we have little information about how the Chinese government actually assigned quotas (recall the discussion in Section 3), we construct a very simple “political allocation” alternative to the model presented in Section 2.2 and solve it using key features of the data documented in Section 4. We then compare the weighted average productivity of exporters in the solution to the “political allocation” scenario to their productivity in the solutions to both the quota-auction and no-quota scenarios described in Section 2.2.

Our setup is straightforward. As China’s aggregate quota is the same under the quota auction and political allocation, we use the same quota restrictiveness from Section 2.2. (i.e., 0.61) in both cases. We choose the number of exporters that receive quotas under the political allocation to match the triple-difference 65

\textsuperscript{27} We find an increase in aggregate productivity of 0.069 log points if we weight \textit{hc} pairs by export value.

\textsuperscript{28} We are unable to make any statements about domestic textile firms in China because unlike the export data, we do not observe product level information for non-expoters. We therefore are unable to separate the the removal of quotas in the MFA goods from other secular trends occurring in the sector for these firms.
percent relative growth in the number of MFA exporters in 2005 displayed in Table 2,

\[ N^{\text{Political Allocation}} = \left( \frac{N^{\text{No Quota}}}{1.65} \right) N^{\text{No Quota}}, \]  

(11)

where \( N^{\text{No Quota}} \) is given by the solution to the no-quota scenario in Section 2.2. We select these \( N^{\text{Political Allocation}} \) exporters according to a second random draw, \( \kappa \), which has correlation \( \rho \) with their productivity draw, \( \phi \).

\[ \kappa = \rho \phi + \sqrt{(1 - \rho^2)} \epsilon, \]  

where \( \epsilon \) is a standard normal and \( \rho \) is the correlation between \( \phi \) and \( \kappa \).

We interpret this second source of firm heterogeneity as an indication of firms’ ability to obtain quota from the government, perhaps due to political connections. Like productivity, we assume that firms are “endowed” with their political connection and ignore the any dead-weight loss associated with unproductive profit-seeking to obtain their political connection (Bhagwati 1982). Obviously, exporters’ weighted average productivity increases with \( \rho \). Finally, we assign quota levels to each of the \( N^{\text{Political Allocation}} \) recipients in a manner designed to match the observed distribution of export value in 2004.\(^30\) This assignment is carried out in two steps. First, we sort observed exporters in 2004 according to export value. Second, we sort the \( N^{\text{Political Allocation}} \) firms in the model according to \( \kappa \) and match them to the export shares in the data, high to low.\(^31\)

To find a solution to this model, we search over various levels of \( \rho \) until we match a key indication of misallocation, the triple-difference 16.7 percent relative decline in MFA incumbents’ market share observed in the data in 2005 (Table 5, right panel). Recall that under the quota auction solution, incumbents lose only 1 percent market share when quotas are removed (Table 1). We find the best fit with \( \rho = 0.59 \). This correlation itself is of interest, as it is an indication of how far the government’s ordering of firms differs from one based solely on productivity.

\(^{29}\) We use value- rather than quantity-based market because we cannot compare quantities across products.

\(^{30}\) The number of firms in the model does not match the number of firms in the data. We therefore group the \( N^{\text{Political Allocation}} \) firms in the model evenly into bins so that the number of bins in the model equals the number of firms in the data. The group of firms with the highest \( \kappa \) receive the highest market share, the group with the next highest \( \kappa \) receives the second highest market share, and so forth. The empirical market share assigned to each bin in the model is divided evenly across its constituent firms.
This level of $\rho$ implies a weighted average productivity of 3.26, versus the quota-auction and no-quota weighted average productivities of 3.43 and 4.41 in Table 1. Given these outcomes, 18 percent $((3.43-3.26)/(4.21-3.26))$ of the gain from removing quotas is due to the removal of the actual licensing regime and the remaining 82 percent of the gain is due directly to the removal of the quota itself.\textsuperscript{32} Put differently, we find that productivity growth from quota removal is 27 percent higher than it would be if quotas had been allocated via an auction. If we apply this decomposition to the productivity calculation in Table 8, and assume equivalence between log points and percent differences, it implies that the removal of the actual licensing institution increased exporters’ productivity by 1.3 percentage points ($0.07 \times 0.18$).

This effect of misallocation can be placed in context by noting that Hsieh and Klenow (2009) calculate TFP gains of 23 to 30 percent from removing all domestic distortions from Chinese manufacturing in 2005. Our analysis indicates removal of China’s textile and clothing quota licensing regime by itself would increase TFP among exporters by 5.1 percent ($3.56/3.23$). Given the myriad other distortions that likely exist in Chinese manufacturing, our estimate seems plausible.

6 Subcontracting

6.1 Subcontracting by Producing Firms

Our estimates are sensitive to unobserved subcontracting. More precisely, if the quota-holding firm and the ultimate producer of the export are different, and if customs documents list the name of the former rather than the latter, then our estimates of extensive-margin activity following quota removal will be biased upwards if subcontractors officially replace quota holders on trade documents starting

\textsuperscript{32}We get a similar breakdown of gains if we perform a similar calibration under the assumption that firm productivity is distributed Pareto. In that case, the parameters that provide the best fit are a shape parameter of 4.5, and $\tau_{\text{Chn,US}} = 1.7$, $\tau_{\text{US,Chn}} = 3.05$, $f_{\text{Chn,US}}/f_{\text{Chn,Chn}} = 1.75$ and $f_{\text{US,Chn}}/f_{\text{US,US}} = 1.05$ and $\rho = 0.55$. Given these parameters, exporters’ weighted average productivity under inefficient allocation, efficient allocation and no quotas is 2.36, 2.54, and 3.61, respectively, implying that 15 percent $((2.54-2.36)/(3.61-2.36))$ of the gain from removing quotas is due to the removal of the inefficient licensing system versus 85 percent for the removal of the quotas. As in the lognormal case, productivity growth from quota removal is 27 percent higher than it would be quotas had been allocated via an auction.
in 2005. Furthermore, assignment of subcontracts on the basis of efficiency (for example, via a black-market auction) would complicate our ability to identify a reallocation of exports towards more efficient firms when the MFA ended.

In principle, subcontracting’s influence on our results should be minimal given its illegality. Unfortunately, as noted in Section 3, we have been unable to determine via interviews or secondary sources the extent to which it might have occurred. Nevertheless, five trends in the data suggest that subcontracting exerts a limited effect on our results.

First, if quota holders were subcontracting to efficient non-quota holders, one might expect these subcontractors to be dominated by a relatively small number of large (i.e., efficient) producers, and that these producers would dominate entry once quotas are removed. Instead, as noted in footnote 21 in Section 4.3, we find that new MFA entrants in 2005 are relatively numerous and relatively small.

Second, if subcontracting were the only way a arm with a quota could fulfill it, the firms relying on subcontractors in 2004 would exit or shrink substantially once quotas were removed. In fact, we find that few incumbents’ exports actually decline from 2004 to 2005, and that MFA exit rates are relatively low compared with OTC exit rates across all ownership types (Table 5).33

Third, we find that 86 percent of the quota-holding MFA exporters in 2004 are also active in similar products destined for other markets. Given that these firms are present in these other markets, they likely have the ability to produce for MFA as well. (Subcontracting exports of textile and apparel goods to other markets makes little sense given that they were not constrained by quotas). It is therefore not obvious why a quota-holder would subcontract production of MFA but produce its own output of similar products for exports to other destinations.34

Fourth, we find little evidence in the NBS production data that textile and clothing producers’ exports exceeded their production, as might be expected if they were on-exporting subcontractors’ output. In both 2004 and 2005, the production-to-export ratio is greater than one for 95 percent of firms that report textile and

33While it is true that SOEs’ market shares decline substantially, this reallocation is driven by faster growth among privately owned firms than SOEs, i.e., almost all incumbents experienced growth in export quantity between 2004 and 2005.

34As discussed in Section 3, virtually all MFA products had full trading rights so all firms could directly export an MFA product to the rest of the world if they so chose.
apparel as their main line of business. One caveat here is that information revealed by the production-to-exports ratio depends on the relative importance of the export market; firms selling large quantities domestically might nevertheless export a relatively small amount of sub-contracted production.

Finally, we find a relatively strong contribution by the extensive margin in “processing” versus “ordinary” exports, where the former refers to exports that are assembled in an export processing zone with a disproportionate share of raw materials that are imported at reduced or often zero tariff rates. Subcontracting of processed exports is more difficult, especially for subcontractors that lie outside the processing zone, given that the rules governing this class of exports must be obeyed by the subcontractor.\textsuperscript{35} Table 9 compares the relative contribution of the extensive margin in MFA versus OTC exports for processed versus all exports. We find that MFA incumbents lose more relative market share in processing exports (-21.7 percent) than in all exports (-16.7 percent), and a similar reallocation away from SOEs.

6.2 Subcontracting by Intermediaries

Unobserved subcontracting by intermediaries (i.e., non-producing “trading” firms) presents a different challenge to identification than subcontracting by producers: while the latter had no reason to continue once the quota institution ended, there is no reason for the former to disappear. Furthermore, even if the number of intermediaries remained constant between 2004 and 2005, the number of producing firms with which they contracted – and, therefore, their influence on the “true” adjustment of China’s extensive and intensive margins – would be unknown because we do not observe the set of producers from which an intermediary sources.

One might expect trading firms to be replaced by producers in 2005 if quota-rich trading firms were an important conduit for quota-poor producers’ goods. In fact, we find relatively strong entry by “trading firms”, defined as in Ahn et al. (2011) as firms with the words “importer”, “exporter” or “trader” in their title, in MFA versus OTC between 2004 and 2005. One reason for this growth that is consistent with our conclusions above but which contributes to an under-estimation

\textsuperscript{35}We identify processed exports via a flag in the customs data. Processed exports account for 19 and 20 percent of MFA exports in 2004 and 2005, respectively.
of the influence of the extensive margin, is that intermediaries helped a new set of low-productivity entrants overcome the fixed costs of exporting once quotas were removed (Ahn et al. 2011). One caveat associated with this conclusion is that our classification of firms as trading companies is imperfect, and, in particular, might result in firms that have both production and trading arms being classified as traders. A large fraction of the textile and clothing apparel SOEs that export, for example, are classified as traders, which is at odds with the evidence presented above that virtually all SOEs in the NBS have higher production output than exports. Indeed, according to our classification, trading companies account for 48 and 46 percent of OTC and MFA exports in 2004, which is quite large relative to the 24 percent share of intermediaries in China’s overall exports. We suspect that state-owned manufacturers may export through trading arms of their production facilities under a name that contains the phrases “importer”, “exporter” or “trader”. This may be why we are only able to match 9 percent of state-owned textile and clothing exporters using a concordance between the firms in the customs and production data that matches by firm name, even though the NBS production data contains the census of SOEs.

Given our concern of classifying these state-owned clothing and apparel exporters as intermediaries, we investigate the effects of treating all SOEs as producers. We find that as a result of this reclassification, the export share of the remaining firms classified as traders falls to 13 and 11 percent, respectively. This result suggests that although intermediaries help facilitate trade in this industry, their role is relatively small, perhaps because the U.S., E.U. and Canada are relatively large markets which makes direct exports profitable.

7 Conclusion

We evaluate the productivity gains associated with a specific trade liberalization, the removal of quotas on Chinese textile and clothing exports to the U.S., E.U. and Canada in 2005. We find that quota removal coincides with substantial reallocation of export activity from incumbents to entrants, and show that this reallocation is inconsistent with an ex ante assignment of quotas by the Chinese government on the basis of firm productivity. As a result, we find that the standard productivity
growth expected from the removal of this trade barrier is magnified by the con-
comitant elimination of the institutions that grew up around it. Our counterfactual
analysis suggests that productivity growth from quota removal is 27 percent higher
than it would be if quotas had been allocated according to firm efficiency.

Our analysis provides intuition for why empirical findings of the productivity
gains from trade (e.g., Feyrer 2009 and Pavcnik 2002) are often large compared to
the relatively modest gains predicted by many trade models (Arkolakis et al. 2010).
While theoretical models typically presume an efficient allocation of resources,
conditional on trade barriers, institutions that evolve to manage them are subject
to corruption or capture, imposing additional distortions. Because reforming these
institutions can be politically difficult, externally mandated reforms that dismantle
them can deliver outsized gains.

References

   of Intermediaries in Facilitating Trade”, Journal of International Economics,
   84(1), 73-85.
5. Aw, Bee Yan and Mark J. Roberts (1986). “Measuring Quality Change in
   Quota-Constrained Import Markets: The Case of U.S. Footwear”, Journal of
   International Economics 21, 45-60.
   Trade Theory and Trade Evidence”, American Economic Journal: Microe-
   conomics, 3, 60-88.
   More: Testing Credit Constraints Using a Targeted Lending”, mimeo, MIT.
   Lens of Development Economics”, in Philippe Aghion and Steven N. Durlauf,
   eds. Handbook of Economic Growth, Volume 1A. Cambridge: Elsevier B.V.


Table 1: Comparison of Outcomes Under the “No-Quota” and “Quota Auction” Scenarios

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Quota Auction</th>
<th>No Quota</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Price Indexes</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( P_{\text{mxx}} \times 10^2 )</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td>( P_{\text{psx}} \times 10^2 )</td>
<td>0.76</td>
<td>0.74</td>
<td>0.98</td>
</tr>
<tr>
<td><strong>Productivity of Chinese Exporters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.14</td>
<td>2.03</td>
<td>0.95</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>3.43</td>
<td>4.21</td>
<td>1.24</td>
</tr>
<tr>
<td><strong>Chinese Export Prices</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (All)</td>
<td>1.40</td>
<td>1.29</td>
<td>0.92</td>
</tr>
<tr>
<td>Weighted Average (All)</td>
<td>1.02</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>Weighted Average (Incumbents)</td>
<td>1.02</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td><strong>Chinese Export Quantity to U.S.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>9.41</td>
<td>24.13</td>
<td>2.56</td>
</tr>
<tr>
<td>Incumbents</td>
<td>9.41</td>
<td>23.80</td>
<td>2.53</td>
</tr>
<tr>
<td><strong>Market Share of Largest Chinese Exporters</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 25%</td>
<td>0.58</td>
<td>0.68</td>
<td>1.17</td>
</tr>
<tr>
<td>Top 10%</td>
<td>0.36</td>
<td>0.48</td>
<td>1.32</td>
</tr>
<tr>
<td>Top 5%</td>
<td>0.24</td>
<td>0.35</td>
<td>1.45</td>
</tr>
<tr>
<td>Top 1%</td>
<td>0.09</td>
<td>0.16</td>
<td>1.82</td>
</tr>
<tr>
<td><strong>License Price</strong></td>
<td>0.14</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Notes: Table summarizes the “no-quota” and “quota auction” solutions to the calibrated model presented in Section 2.1. Weighted averages are across firms using export quantities as weights. Final columns is second column divided by first column.
Table 2: Export Value and Number of Exporters to the U.S., E.U. and Canada, by Product

<table>
<thead>
<tr>
<th></th>
<th>Export Value ($Billion)</th>
<th>Number of Exporting Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTC</td>
<td>MFA</td>
</tr>
<tr>
<td>2000</td>
<td>6.2</td>
<td>4.8</td>
</tr>
<tr>
<td>2001</td>
<td>6.6</td>
<td>6.2</td>
</tr>
<tr>
<td>2002</td>
<td>7.9</td>
<td>6.5</td>
</tr>
<tr>
<td>2003</td>
<td>11.2</td>
<td>7.9</td>
</tr>
<tr>
<td>2004</td>
<td>14.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2005</td>
<td>18.8</td>
<td>19.6</td>
</tr>
</tbody>
</table>

%Growth 2000-5: 205 307 236
Annual %Growth 2000-4: 23 17 27
%Growth 2004-5: 32 119 31

Notes: Panels report annual export value and number of exporters by type of product-country. OTC and MFA represent quota-free and quota-bound exports, respectively (see text). Final columns summarizes China’s total exports of all goods in noted year.

Table 3: 2004 versus 2005 Export Value Market Shares, by Type of Firm and by Product

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OTC</td>
<td>MFA</td>
<td>Total</td>
</tr>
<tr>
<td>SOE</td>
<td>0.44</td>
<td>0.54</td>
<td>0.26</td>
</tr>
<tr>
<td>Domestic</td>
<td>0.29</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>Foreign</td>
<td>0.26</td>
<td>0.23</td>
<td>0.57</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>1.00</strong></td>
<td><strong>1.00</strong></td>
<td><strong>1.00</strong></td>
</tr>
</tbody>
</table>

Note: Table reports export-value market share by type of firm, product and destination market in 2004 and 2005, as well as the change in market share between 2004 and 2005.
Table 4: Aggregate TFP Gain Following Quota Removal

<table>
<thead>
<tr>
<th>Ownership</th>
<th>Average Relative TFP</th>
<th>Relative Market Share Change</th>
<th>TFP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-Owned Enterprises</td>
<td>0.82</td>
<td>-0.159</td>
<td>-0.130</td>
</tr>
<tr>
<td>Private Enterprises</td>
<td>1.76</td>
<td>0.086</td>
<td>0.152</td>
</tr>
<tr>
<td>Foreign Enterprises</td>
<td>1.54</td>
<td>0.073</td>
<td>0.113</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td>0.135</td>
</tr>
</tbody>
</table>

Notes: Table reports aggregate changes in relative productivity by ownership for MFA in 2005 relative to control groups. See text for a description of how TFP measures are calculated from the Annual Survey of Industries. The first column reports for each ownership type the mean TFP relative to the industry mean. These averages correspond to the averages reported in the corresponding Figure 1. The relative change in market shares in the second column are taken from Table 3 bottom panel). The third column multiplies the change in market share with the average productivity measure. The final row is the sum of first three rows.

Table 5: Decomposition of Absolute and Relative 2004 to 2005 Changes in MFA Market Share

<table>
<thead>
<tr>
<th>Margin</th>
<th>Single Difference</th>
<th>Triple Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AllSOEDomesticForeign</td>
<td>AllSOEDomesticForeign</td>
</tr>
<tr>
<td>Incumbents</td>
<td>-0.210 -0.159 -0.033 -0.018</td>
<td>-0.167 -0.142 -0.022 -0.003</td>
</tr>
<tr>
<td>Adders</td>
<td>0.647 0.260 0.252 0.135</td>
<td>0.164 0.018 0.075 0.071</td>
</tr>
<tr>
<td>New Exporters</td>
<td>0.064 0.003 0.046 0.014</td>
<td>0.027 -0.002 0.025 0.005</td>
</tr>
<tr>
<td>Exiters</td>
<td>-0.501 -0.323 -0.132 -0.046</td>
<td>-0.024 -0.006 -0.010 -0.007</td>
</tr>
<tr>
<td>Total Net Entry</td>
<td>0.210 0.060 0.167 0.103</td>
<td>0.167 0.009 0.090 0.068</td>
</tr>
<tr>
<td>Total</td>
<td>0.000 -0.219 0.134 0.085</td>
<td>0.000 -0.133 0.068 0.065</td>
</tr>
</tbody>
</table>

Notes: Left panel reports average change in 2004 to 2005 quantity-based market share across MFA product-country pairs by margin of adjustment and firm ownership type. Right panel reports average 2004 to 2005 versus 2003 to 2004 changes in MFA versus OTC quantity-based market shares across product-country pairs by margin of adjustment and firm ownership type. In both panels, rows 2 to 4 sum to row 5, and rows 1 and 5 sum to row 6. First column is sum of remaining columns. Results are generated using regression noted in text (the full regression results are reported in Table 10). Estimated coefficients are bold if they are statistically significant at the 10 percent level or better.
Table 6: Decomposition of Absolute and Relative 2004 to 2005 Changes in MFA Prices

<table>
<thead>
<tr>
<th>Margin</th>
<th>Single Difference</th>
<th>Triple Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
</tr>
<tr>
<td>Incumbents (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>-0.017</td>
<td>-0.013</td>
</tr>
<tr>
<td>Across</td>
<td>-0.039</td>
<td>-0.033</td>
</tr>
<tr>
<td>Entrant (N)</td>
<td>-0.100</td>
<td>-0.025</td>
</tr>
<tr>
<td>Exiter (X)</td>
<td>0.023</td>
<td>0.021</td>
</tr>
<tr>
<td>Net Entry (N-X)</td>
<td>-0.123</td>
<td>-0.047</td>
</tr>
<tr>
<td>Total</td>
<td>-0.179</td>
<td>-0.093</td>
</tr>
<tr>
<td>Extensive Share</td>
<td>0.687</td>
<td>0.505</td>
</tr>
</tbody>
</table>

Notes: Left panel reports average change in 2004 to 2005 export price across MFA product-country pairs by margin of adjustment and firm ownership type. Right panel decomposes 2004-5 versus 2003-4 relative changes in MFA versus OTC export price by margin of adjustment and firm ownership type. Rows 3 and 4 sum to row 5. Rows 1, 2 and 5 sum to row 6. First column is sum of remaining columns. Results are generated using regression noted in text (the full regression results are reported in Table 11). Final row reports the contribution of the extensive margin to the total price change of each column. Coefficients in bold are statistically significant at the 10 percent level or better.

Table 7: Decomposition of Absolute and Relative Changes in MFA Quality

<table>
<thead>
<tr>
<th>Margin</th>
<th>Single Difference</th>
<th>Triple Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
</tr>
<tr>
<td>Incumbents (I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.019</td>
<td>-0.006</td>
<td>0.012</td>
</tr>
<tr>
<td>Entrant (N)</td>
<td>-0.049</td>
<td>-0.008</td>
</tr>
<tr>
<td>Exiter (X)</td>
<td>-0.074</td>
<td>-0.039</td>
</tr>
<tr>
<td>Net Entry (N-X)</td>
<td>0.025</td>
<td>0.032</td>
</tr>
<tr>
<td>Total</td>
<td>0.044</td>
<td>0.026</td>
</tr>
<tr>
<td>Extensive Share</td>
<td>0.567</td>
<td>1.230</td>
</tr>
</tbody>
</table>

Notes: Left panel reports average change in 2004 to 2005 export quality across MFA product-country pairs by margin of adjustment and firm ownership type. See text for definition of quality. Right panel decomposes 2004-5 versus 2003-4 relative changes in MFA versus OTC export quality by margin of adjustment and firm ownership type. Rows 2 to 3 sum to row 4. Rows 1 and 4 sum to row 5. First column is sum of remaining columns. Results are generated using regression noted in text (the full regression results are reported in Table 12). Final row reports the contribution of the extensive margin to the total quality change of each column. Coefficients in bold are statistically significant at the 10 percent level or better.
Table 8: Decomposition of Absolute and Relative 2004 to 2005 Changes in MFA Quality-Adjusted Prices

<table>
<thead>
<tr>
<th>Margin</th>
<th>Single Difference</th>
<th></th>
<th></th>
<th>Triple Difference</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
</tr>
<tr>
<td>Incumbents (I)</td>
<td>-0.075</td>
<td>-0.040</td>
<td>-0.021</td>
<td>-0.014</td>
<td>-0.014</td>
<td>-0.026</td>
<td>0.002</td>
</tr>
<tr>
<td>Entrant (N)</td>
<td>-0.051</td>
<td>-0.017</td>
<td>-0.020</td>
<td>-0.013</td>
<td>-0.039</td>
<td>-0.017</td>
<td>-0.015</td>
</tr>
<tr>
<td>Exiter (X)</td>
<td>0.097</td>
<td>0.061</td>
<td>0.025</td>
<td>0.011</td>
<td>0.016</td>
<td>0.020</td>
<td>0.002</td>
</tr>
<tr>
<td>Net Entry (N-X)</td>
<td>-0.147</td>
<td>-0.078</td>
<td>-0.045</td>
<td>-0.024</td>
<td>-0.055</td>
<td>-0.037</td>
<td>-0.017</td>
</tr>
<tr>
<td>Total</td>
<td>-0.222</td>
<td>-0.118</td>
<td>-0.067</td>
<td>-0.037</td>
<td>-0.070</td>
<td>-0.063</td>
<td>-0.015</td>
</tr>
<tr>
<td>Extensive Share</td>
<td>0.664</td>
<td>0.662</td>
<td>0.682</td>
<td>0.637</td>
<td>0.794</td>
<td>0.585</td>
<td>1.133</td>
</tr>
</tbody>
</table>

Notes: Left panel reports average change in 2004 to 2005 export quality-adjusted prices across MFA product-country pairs by margin of adjustment and firm ownership type. See text for definition of quality. Right panel decomposes 2004-5 versus 2003-4 relative changes in MFA versus OTC export quality-adjusted prices by margin of adjustment and firm ownership type. Rows 2 to 3 sum to row 4. Rows 1 and 4 sum to row 5. First column is sum of remaining columns. Results are generated using regression noted in text (the full regression results are reported in Table 13). Final row reports the contribution of the extensive margin to the total quality-adjusted price change of each column. Coefficients in bold are statistically significant at the 10 percent level or better.

Table 9: Decomposition of 2004 to 2005 Changes in Relative MFA Market Share, Processing Exports

<table>
<thead>
<tr>
<th>Margin</th>
<th>All Exports</th>
<th></th>
<th></th>
<th>Processing Exports</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
</tr>
<tr>
<td>Incumbents</td>
<td>-0.167</td>
<td>-0.142</td>
<td>-0.022</td>
<td>-0.003</td>
<td>-0.217</td>
<td>-0.150</td>
<td>-0.022</td>
</tr>
<tr>
<td>Net Adders</td>
<td>0.164</td>
<td>0.018</td>
<td>0.075</td>
<td>0.071</td>
<td>0.149</td>
<td>-0.028</td>
<td>-0.009</td>
</tr>
<tr>
<td>New Exporters</td>
<td>0.027</td>
<td>-0.002</td>
<td>0.025</td>
<td>0.005</td>
<td>0.038</td>
<td>0.011</td>
<td>-0.002</td>
</tr>
<tr>
<td>Exiters</td>
<td>-0.024</td>
<td>-0.006</td>
<td>-0.010</td>
<td>-0.007</td>
<td>0.029</td>
<td>0.009</td>
<td>0.016</td>
</tr>
<tr>
<td>Total Net Entry</td>
<td>0.167</td>
<td>0.009</td>
<td>0.090</td>
<td>0.068</td>
<td>0.217</td>
<td>-0.008</td>
<td>0.005</td>
</tr>
<tr>
<td>Total</td>
<td>0.000</td>
<td>-0.133</td>
<td>0.068</td>
<td>0.065</td>
<td>0.000</td>
<td>-0.158</td>
<td>-0.017</td>
</tr>
</tbody>
</table>

Notes: Table reports average 2004 to 2005 versus 2003 to 2004 changes in MFA versus OTC quantity-based market shares across product-country pairs by margin of adjustment and firm ownership type. The left panel re-produces the figures in Table 4, and the right panel is restricted to processing exports. In each panel, rows 3 to 5 sum to row 6. Final row is sum of rows 1 and 6. First column is sum of remaining columns. Results are generated using regression noted in text. Estimated coefficients in first five rows are bold if they are statistically significant at the 10 percent level or better.
Figure 1: Textile and Apparel Producers’ TFP, 2005

![TFP Distribution by Ownership](image)

- SOEs: 0.82
- Domestic: 1.76
- Foreign: 1.54

First and ninety-ninth percentiles are dropped from each distribution. Collective firms are excluded.

Figure 2: MFA Incumbents’s 2004-5 Change in Market Share vs Initial 2004 Level

![Market Share Change](image)

Note: Market shares computed with respect to all firms in 2004.

Figure 3: Average Export Price Growth Across Product-Country Pairs, by Group and Year

![Price Change by Group and Year](image)

40
Figure 4: MFA Export Prices Relative to the Average Export Price Across All Firms in 2004 and 2005, by Margin

First and ninety-ninth percentiles are dropped from each distribution.

Figure 5: Exiters versus Entrants in 2005 OTC and 2004 MFA

First and ninety-ninth percentiles are dropped from each distribution.
**A Numerical Solutions (Not For Publication)**

In this appendix, we provide further detail on Irarrazabal et al. (2010) and our procedures for solving the model numerically.

There is one industry and two countries, although this is easily generalized to multiple countries and multiple industries. A representative consumer maximizes a CES utility function

\[ U = \left( \int_{\omega \in \Omega} q(\omega)^{(\sigma-1)/\sigma} d\omega \right)^{\sigma/(\sigma-1)} \]  

(A.12)

Firms face three types of costs. The first two are the standard: *ad valorem* tariffs \((\tau_{od})\) and fixed costs of production \((f_{od})\). In order to export a quota-bound good from origin country \(o\) to destination country \(d\), firms must also pay a license fee \((a_{od} > 0)\) per unit exported. This quota license fees is equivalent to per-unit increases in the cost of exporting.

Firm productivity is drawn from the distribution \(G(\varphi)\) with density \(g(\varphi)\). The price of variety \(\varphi\) in export market \(d\) is given by

\[ p_{od}(\varphi, a_{od}) = \frac{\sigma}{\sigma - 1} \omega_o \left( \frac{\tau_{od}}{\varphi} + a_{od} \right), \]  

(A.13)

where \(\sigma > 1\) is the constant elasticity of substitution across varieties and \(\omega_o\) is the wage in the origin country. The corresponding export quantity is given by

\[ q_{od}(\varphi, a_{od}) = \left( \frac{\sigma}{\sigma - 1} \omega_o \right)^{-\sigma} \left( \frac{\tau_{od}}{\varphi} + a_{od} \right)^{-\sigma} (P_d)^{\sigma-1} Y_d, \]  

(A.14)

where \(P_d\) and \(Y_d\) are the price index and expenditure in the destination market, respectively. The license price that equates the aggregate demand for exports with the size of the quota is determined (endogenously) by a Walrasian auctioneer.

This model assumes that the total mass of potential entrants in each country is proportional to a country’s income. Since there is no free entry, net profits are pooled and re-distributed to consumers in country \(o\) who own \(\omega_o\) of a diversified global fund. Total income in each country is \(Y_o = \omega_o L_o (1 + \pi)\) where \(\pi\) is the dividend per share of the global fund. The profits for country \(o\)’s active firms selling to market \(d\) are \(\pi_{od} = \frac{p_{od} q_{od}}{\sigma} - n_{od} f_{ods}\), so

42
\[ \pi = \frac{\sum_{o,d} \pi_{od}}{\sum_{o} \omega_{o} L_{o}}. \]  

(A.15)

Firms maximize the following profits separately to each destination

\[ q_{od}(\varphi, a_{od}) \left[ p_{od}(\varphi, a_{od}) - \omega_{o} \left( \frac{\tau_{od}}{\varphi} + a_{od} \right) \right] - \omega_{o} f_{oo}, \]  

(A.16)

where \( f_{oo} \) is the fixed cost of production in the home profit equation and \( f_{od} \) is the fixed cost of exporting from \( o \) to \( d \).

Firms enter a market if there are positive profits. The marginal exporter earns zero profits and is identified as

\[ \varphi_{od}^{\ast} = \left[ \left( \frac{\sigma - 1}{\sigma} \right) \frac{1}{\sigma} \left( \frac{\omega_{o} f_{od}^{x}}{Y_{d}} \right) \frac{1}{\omega_{o} \tau_{od}} \frac{P_{d}}{\tau_{od}} - \frac{a_{od}}{\tau_{od}} \right]^{-1}, \]  

(A.17)

where \( P_{d} = P_{d}(\varphi_{od}^{\ast}) \). Given \( \varphi_{od}^{\ast} \), we can express the price index in country \( d \) as

\[ P_{d}^{1-\sigma} = \omega_{o} L_{o} \int_{\varphi_{od}^{\ast}}^{\infty} p_{od}(\varphi, a_{od})^{1-\sigma} dG(\varphi). \]  

(A.18)

Since there is no closed form solution to the price index when \( a_{od} > 0 \), we must solve the model numerically. Our solution modifies the algorithm described in Irarrazabal et al (2010) to account for an endogenous license price. The parameters are: \( \sigma, L = L_{Chn}, L_{UEC}, G(\varphi) \sim \ln \mathbb{N}(\mu, \theta), \tau = \{ \tau_{Chn,Chn}, \tau_{Chn,UEC}, \tau_{UEC,Chn}, \tau_{UEC,UEC} \}, f = \{ f_{Chn,Chn}, f_{Chn,UEC}, f_{UEC,Chn}, f_{UEC,UEC} \}, \omega = \{ \omega_{Chn}, \omega_{UEC} \}. \) Below we explain how the parameters are chosen. Given the parameters, we can numerically solve for the endogenous variables of the model: \( \varphi^{\ast} = \{ \varphi_{Chn,Chn}^{\ast}, \varphi_{Chn,UEC}^{\ast}, \varphi_{UEC,Chn}^{\ast}, \varphi_{UEC,UEC}^{\ast} \}, P = \{ P_{Chn}, P_{UEC} \}, Y = \{ Y_{Chn}, Y_{UEC} \}, \pi \) and \( a_{Chn,UEC} \) (we assume that China does not impose quotas on U.S. goods).

We solve two versions of the model. The first version does not impose quotas on China’s exports to the U.S. (the “no quota” equilibrium). In this scenario, \( a_{Chn,UEC} = 0 \). In the “efficient allocation” equilibrium, the license price is non-negative and depends on the restrictiveness of the quotas that we calculate from the data.

We solve the model with one million firms drawn from the productivity distri-
Superscripts denoting the iteration round:

1. Choose a starting value for the license price \( a_{od}^0 \). (In the “no quota” equilibrium, we set \( a_{od}^0 = 0 \)).
2. Choose a starting value for the price indexes, \( P^0 \).
3. Simultaneously solve for the dividend per share in equation (A.15) and the cutoffs \( \varphi^* \) in equation (A.17). This involves solving five unknowns with five equations. First choose a candidate \( \pi \) and then compute the cutoffs in (A.17). Given the candidate \( \varphi^* \), compute \( \pi \) and re-compute the cutoffs, iterating until convergence is achieved. This process determines the cutoffs \( \varphi^{0*} \) given the candidate \( P^0 \) in step 2.
4. Compute the price indexes in (A.18).
5. Iterate over steps 3 and 4. The equilibrium values of \( \{ \varphi^*, P \} \) are found when \( ||P^r - P^{r-1}|| \) is minimized. The values of \( Y \) and \( \pi \) are determined once \( \{ \varphi^*, P \} \) are known. In the “no quota” equilibrium, stop here and compute aggregate exports from China to the U.S.. In the “efficient allocation” equilibrium, continue to step 6.
6. Compare aggregate exports from China to the U.S. with exports under “no quota” equilibrium multiplied by the quota restrictiveness. Iterate on steps 1-5 until this difference is minimized.

We impose values for some parameters and choose values for the remaining parameters by gridding over them and comparing their solutions to the data. We assume that the two countries have identical sizes \( L_{UEC} = L_{Chn} = 100 \). We choose an elasticity of substitution, \( \sigma = 4 \), that is the median among the apparel and textiles elasticities estimated in Broda et al. (2006). We assume a log normal productivity distribution, \( G(\varphi) \sim \ln N(\mu, \theta) \). We assume iceberg trade costs are equal to 1 within countries, \( \tau_{Chn,Chn} = \tau_{US,US} = 1 \). We assume domestic fixed costs of production are low enough to allow all firms to produce and set them to \( f_{Chn,Chn} = f_{UEC,UEC} = 2 \times 10^{-6} \). We set the wage in each country equal to unity; although this assumption appears strong, it simply implies that that the iceberg

\[36\] The Matlab code used to generate these results, available in our electronic appendix, is a modified version of the code used in Irarrazabal et al. (2010), graciously provided by Andreas Moxnes.
and fixed trade costs that we match to the data capture variation in wages as well as trade costs. Although this assumption appears strong, it simply implies that the iceberg and fixed trade costs that we match to the data capture variation in wages as well as trade costs.

We jointly choose the remaining parameters – the log normal mean and standard deviation, the two iceberg trade costs (τ_{Chn,UEC} and τ_{UEC,Chn}) and the ratios of exporting to domestic fixed costs (f_{Chn,UEC} and f_{UEC,Chn}) – to match the following features of the data: the 75th, 90th, 95th, 99th and 99.9th percentiles of the distribution of exports among Chinese textile and clothing exporters, the share of Chinese textile and clothing producers that export and the Chinese and U.S. market shares of U.S. and Chinese textile and clothing consumption in 2005, respectively. China’s Annual Survey of Industry reports that 44 percent of firms in the textile and clothing sectors (Chinese Industrial Classifications 17 and 18) exported in 2005. The share exports accounted for by the \{75th,90th,95th,99th,99.9th\} percentiles of these exporters is \{.26,.46,.59,.80,93\}. According to textile and clothing production and trade data in the Annual Survey and Chinese customs data, respectively, the U.S. market share of Chinese textile and clothing (China Industrial Classification codes 17 and 18) consumption is 1.2 percent. According to the NBER Productivity Database, the Chinese market share of U.S. apparel and textile consumption (NAICS codes 313, 314 and 315) is 13.1 percent. All data are from 2005 because that is the first post-quota year. The resulting parameters are μ = 1.29, θ = 0.58, τ_{Chn,UEC} = 1.80, τ_{UEC,Chn} = 3.55, f_{Chn,UEC}/f_{Chn,Chn} = 1.15 and f_{UEC,Chn}/f_{UEC,UEC} = 1.15. The model matches the moments we target well: The share exports accounted for by the \{75th,90th,95th,99th,99.9th\} percentiles is \{.32,.52,.65,.84,1\}; 44 percent of the simulated Chinese firms export and they have a 13.5 percent market share in the U.S.; and 8 percent of the simulated U.S. firms export and have a 1.2 percent market share in China. The sum of the squared deviations between model and data in percentage terms is 0.43.

Finally, we need one more parameter, the quota restriveness, to solve the “efficient allocation” simulation. According to the data, the median growth of Chinese exports of quota-restricted goods relative to unrestricted goods was 155 percent in 2005 relative to 2004. This implies a quota restrictiveness of 0.61 (1-1/2.55).\(^{37}\)

\(^{37}\)This 155 percent growth rate is relative to quota-unconstrained textile and clothing exports
B Additional Empirical Results (Not for Publication)

Table 10 contains the underlying regression output for the results reported in Table 5. Table 11 contains the underlying regression output for the results reported in Table 6. Table 12 contains the underlying regression output for the results reported in Table 7. Table 13 contains the underlying regression output for the results reported in Table 8.

as well as to export growth of both types of exports in 2004, i.e., a “triple” difference that is explained in greater detail in Section 4.3. We assume this measure of quota restrictiveness is independent of whether quotas are allocated efficiently or inefficiently in 2004.
## Tables (Not for Publication)

### Table 10: Regression Output for Table 5

<table>
<thead>
<tr>
<th>Incumbent</th>
<th>Exit</th>
<th>Adder</th>
<th>New Exporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
</tr>
<tr>
<td>1(2005)</td>
<td>-0.0225</td>
<td>-0.0047</td>
<td>-0.0064</td>
</tr>
<tr>
<td>1(MFA)</td>
<td>0.0261</td>
<td>0.0234</td>
<td>0.0013</td>
</tr>
<tr>
<td>x 1(2005)</td>
<td>-0.1672</td>
<td>-0.1418</td>
<td>-0.0222</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0465</td>
<td>-0.0361</td>
<td>-0.0054</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Single Difference</td>
<td>-0.210</td>
<td>-0.159</td>
<td>-0.03</td>
</tr>
<tr>
<td>Double Difference</td>
<td>-0.141</td>
<td>-0.118</td>
<td>-0.021</td>
</tr>
<tr>
<td>Triple Difference</td>
<td>-0.167</td>
<td>-0.142</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

**Notes:** Table displays regression of change in noted quantity market share margin on noted dummy variables (see text), by firm ownership. Sample includes all product country pairs in groups MFA and OTC and years 2004 and 2005. Single difference refers to mean 2004 to 2005 change in quantity market share across product-county pairs in MFA. Double difference refers to the single difference mean less the analogous mean for OTC. Triple difference refers to 2005 double difference mean less the 2004 double difference mean. Standard errors are adjusted for clustering at the eight-digit HS level.

### Table 11: Regression Output for Table 6

<table>
<thead>
<tr>
<th>Incumbent - Within</th>
<th>Incumbent - Across</th>
<th>Entreat</th>
<th>Extert</th>
<th>Total Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
<td>All</td>
</tr>
<tr>
<td>1(2005)</td>
<td>-0.0101</td>
<td>-0.0098</td>
<td>-0.0068</td>
<td>-0.0016</td>
</tr>
<tr>
<td>1(MFA)</td>
<td>-0.0080</td>
<td>-0.0043</td>
<td>-0.0007</td>
<td>-0.0029</td>
</tr>
<tr>
<td>x 1(2005)</td>
<td>-0.0076</td>
<td>-0.0052</td>
<td>-0.0035</td>
<td>-0.0035</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0261</td>
<td>0.0171</td>
<td>0.0035</td>
<td>-0.0055</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Single Difference</td>
<td>-0.017</td>
<td>-0.013</td>
<td>-0.003</td>
<td>0.00</td>
</tr>
<tr>
<td>Double Difference</td>
<td>-0.003</td>
<td>-0.020</td>
<td>-0.007</td>
<td>-0.005</td>
</tr>
<tr>
<td>Triple Difference</td>
<td>-0.025</td>
<td>-0.016</td>
<td>-0.007</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**Notes:** Table displays regression of change in noted price margin on noted dummy variables by firm ownership. Sample includes all product country pairs in groups MFA and OTC and years 2004 and 2005. Single difference refers to mean 2004 to 2005 change in prices across product-country pairs in MFA. Double difference refers to the single difference mean less the analogous mean for OTC. Triple difference refers to 2005 double difference mean less the 2004 double difference mean. Standard errors are adjusted for clustering at the eight-digit HS level.
Table 12: Regression Output for Table 7

<table>
<thead>
<tr>
<th></th>
<th>Incumbent</th>
<th>Entant</th>
<th>Exeter</th>
<th>Total Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
</tr>
<tr>
<td>1(2005)</td>
<td>-0.0884</td>
<td>-0.0378</td>
<td>-0.0254</td>
<td>-0.0252</td>
</tr>
<tr>
<td>1(MFA)</td>
<td>0.0072</td>
<td>0.0510</td>
<td>0.0033</td>
<td>0.0036</td>
</tr>
<tr>
<td>x 1(2005)</td>
<td>0.0135</td>
<td>0.0099</td>
<td>0.0015</td>
<td>0.0021</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0082</td>
<td>0.0061</td>
<td>0.0037</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>0.0114</td>
<td>0.0086</td>
<td>0.0052</td>
<td>0.0046</td>
</tr>
</tbody>
</table>

Notes: Table displays regression of change in market share of type A firms, SOE vs. private, by firm ownership. See text for definition of quality-adjusted prices. Sample includes all product country pairs in MFA and OTC and years 2004 and 2005. Single difference refers to mean 2004 to 2005 change in quality-adjusted prices across product-country pairs in MFA. Double difference refers to the single difference mean less the analogous mean for OTC. Triple difference refers to 2004 double difference mean less the 2004 double difference mean. Standard errors are adjusted for clustering at the eight-digit HS level.

Table 13: Regression Output for Table 8

<table>
<thead>
<tr>
<th></th>
<th>Incumbent</th>
<th>Entant</th>
<th>Exeter</th>
<th>Total Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>SOE</td>
<td>Domestic</td>
<td>Foreign</td>
</tr>
<tr>
<td>1(2005)</td>
<td>-0.0884</td>
<td>-0.0378</td>
<td>-0.0254</td>
<td>-0.0252</td>
</tr>
<tr>
<td>1(MFA)</td>
<td>0.0072</td>
<td>0.0510</td>
<td>0.0033</td>
<td>0.0036</td>
</tr>
<tr>
<td>x 1(2005)</td>
<td>0.0135</td>
<td>0.0099</td>
<td>0.0015</td>
<td>0.0021</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0082</td>
<td>0.0061</td>
<td>0.0037</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>0.0114</td>
<td>0.0086</td>
<td>0.0052</td>
<td>0.0046</td>
</tr>
</tbody>
</table>

Notes: Table displays regression of change in market share of type A firms, SOE vs. private, by firm ownership. See text for definition of quality-adjusted prices. Sample includes all product country pairs in MFA and OTC and years 2004 and 2005. Single difference refers to mean 2004 to 2005 change in quality-adjusted prices across product-country pairs in MFA. Double difference refers to the single difference mean less the analogous mean for OTC. Triple difference refers to 2004 double difference mean less the 2004 double difference mean. Standard errors are adjusted for clustering at the eight-digit HS level.