
Infrequent Random Portfolio Decisions

in an Open Economy Model1

Philippe Bacchetta

University of Lausanne

Swiss Finance Institute

CEPR

Eric van Wincoop

University of Virginia

NBER

Eric R. Young

University of Virginia

June 30, 2020

1We would like to thank four referees for extensive comments. Eric van Wincoop

gratefully acknowledges financial support from the Bankard Fund for Political Economy

and the Hong Kong Institute for Monetary Research. Philippe Bacchetta thanks the

Swiss National Science Foundation. We thank Jessica Leutert and Fang Liu for research

assistance and seminar participants at the Stockholm School of Economics, CERGE,

the University of Lausanne and the SED meeting in Edinburgh for useful comments. A

previous version of this paper circulated under the title “Gradual Portfolio Adjustment:

Implications for Global Equity Portfolios and Returns”.



Abstract

Motivated by evidence of portfolio frictions at the level of both households and

global mutual funds, we analyze a two-country DSGE model of the global equity

market where investors have a constant probability of making a new portfolio de-

cision. There are both dividend and financial shocks, which lead to exogenous

portfolio shifts. The model is solved with a global solution method that combines

a Taylor projection method with the modified Shepard’s inverse-weighting inter-

polation. Intuition is developed by deriving an approximated portfolio expression.

A numerical illustration shows that the portfolio friction significantly affects the

behavior of asset prices, expected excess returns and portfolios in response to fi-

nancial shocks. For the same size financial shock, the impact is much larger with

the friction. The model with the friction can account better for the observed ex-

cess return predictability and other moments involving excess returns and portfolio

shares.

JEL classification: F30, F41, G11, G12

Keywords: portfolio frictions, infrequent portfolio decisions, international port-

folio allocation, excess return predictability, financial shocks.



1 Introduction

The response of portfolio allocation to changes in expected returns is a critical ele-

ment of open economy macro models. The extent of the portfolio response affects

asset prices as well as capital flows, which in turn affects business cycles. Most

models of international capital flows driven by portfolio choice are frictionless mod-

els where all investors reallocate their portfolios each period based on changes in

expected returns and risk.1 Recently Bacchetta, Tièche and van Wincoop (2020),

from here on BTW, provide evidence on the importance of portfolio frictions for in-

ternational portfolio choice. Similar to Gârleanu and Pederson (2013), they extend

the standard Markowitz frictionless mean-variance portfolio to allow for portfolio

frictions in the form of costly deviations from benchmark portfolios (lagged port-

folio share and buy-and-hold portfolio share). They apply the resulting portfolio

expression to international equity portfolios of U.S. mutual funds and find strong

evidence of portfolio frictions. These frictions lead to a more gradual portfolio

response, and weaker initial response, to changes in expected returns. Giglio et

al. (2019) provide related evidence, although not for international data. Using

a survey of U.S. based Vanguard investors, they document a response of equity

portfolio shares to expected returns that is too weak to make sense in the context

of frictionless models. They further provide evidence that changes in expected

returns have limited explanatory power for when investors trade, but help predict

the direction and the magnitude of trading conditional on its occurrence. They

suggest that this can be captured by introducing infrequent random trading, à la

Calvo.2

An important contribution of the paper is to develop and solve a model with

infrequent random portfolio decision making, which has not been done before. We

introduce the Calvo type portfolio friction in a two-country DSGE model for the

global equity market. Infinitely lived investors can hold equity of both countries

and a risk-free bond. Each period with probability p they choose a new portfo-

1Examples of recent DSGE models of capital flows based on portfolio choice include Benhima

and Cordonier (2020), Davis and van Wincoop (2018), Devereux and Sutherland (2007, 2010),

Didier and Lowenkron (2012), Evans and Hnatkovska (2012, 2014), Gabaix and Maggiori (2015),

Hnatkovska (2010) and Tille and van Wincoop (2010a,b, 2014).
2Other papers that have documented portfolio inertia by households include Ameriks and

Zeldes (2004), Bilias et al. (2010), Brunnermeier and Nagel (2008), Mitchell et al. (2006).

However, these papers do not consider the portfolio response to changes in expected returns.
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lio and otherwise hold their portfolio allocation constant. The Taylor projection

method developed in Levintal (2018) is used to obtain a global solution. An addi-

tional contribution is to develop intuition about optimal portfolio decisions in this

framework and the effect of the portfolio friction on asset prices, excess returns

and portfolios. Finally, in a numerical illustration we show that the model is more

consistent with data on excess returns and portfolio shares than the frictionless

model.

To develop intuition, we derive an approximate expression of the equity portfo-

lio share in the Home country that uses techniques related to Campbell and Viceira

(1999). This approximation of the optimal portfolio is equal to sum of three terms:

a term proportional to the expected present discounted value of all future excess

returns, a term that depends on exogenous portfolio shocks, and a hedge term

that depends on the present discounted value of risk associated with future asset

returns. We show numerically that the first two terms account for almost all of

the fluctuations in portfolios by agents making new portfolio decisions. Making

infrequent portfolio decisions implies that investors have longer effective horizons

when they do make a portfolio decision. Their portfolio choice therefore depends

on expectations of expected excess returns further into the future.

A key implication of the portfolio friction is that it leads to a weaker, and more

gradual, portfolio response to changes in expected excess returns. This is the case

both because a limited fraction of investors make new portfolio decisions each pe-

riod and because those that do make a new portfolio decision have longer effective

horizons and are therefore less responsive to expected excess returns in the near fu-

ture. The weaker portfolio response implies that financial shocks, associated with

exogenous portfolio shifts, have a much bigger impact on asset prices, expected ex-

cess returns and portfolio shares. Examples of financial shocks are portfolio shifts

due to changes in risk-aversion or the risk-bearing capacity of financial institutions,

liquidity trade, noise trade or FX intervention. Since portfolios are less sensitive to

expected excess returns under the portfolio friction, a larger change in equilibrium

expected excess returns is needed to clear the market. This implies larger changes

in asset prices. Equilibrium portfolio shares will also change more.3

3In frictionless models, a portfolio shift from the US to the rest of the world causes a very

small (third-order) drop in the relative US asset price, leading to an equally small increase in its

expected excess return that reverses the flows and generates equilibrium. Tille and van Wincoop

(2014) show that first-order changes in portfolio shares are associated with third-order changes
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Gabaix and Maggiori (2015) and Itskhoki and Muhkin (2019) have recently

emphasized the importance of financial shocks for global capital markets.4 Itskhoki

and Muhkin (2019) show that they account for the disconnect between exchange

rates and observed macro fundamentals. Gabaix and Maggiori (2015) show that

financial shocks can have large effects on exchange rates and capital flows in a

model where global financiers who intermediate financial flows have limited risk-

bearing capacity. They cite a variety of evidence consistent with the view that

financial shocks are an important driver of exchange rates and capital flows.5

The larger equilibrium expected excess returns as a result of the portfolio fric-

tion are consistent with excess return predictability based on on international

equity return differentials. In Table 1 we report results from a panel regression of

monthly US minus foreign stock returns on the differential in the log earning-price

ratio. The panel includes 73 foreign countries and is based on a half century of data,

from January 1970 to February 2019. There is strong evidence of predictability

of international return differentials at horizons of 1, 3, 12 and 48 months. Anal-

ogous that what is typically found for excess returns of stocks over bonds, the

predictability coefficient and R2 increase with the horizon.6 Such predictability of

international equity return differentials is analogous to the well-known predictabil-

ity of international short-term bond return differentials by the interest differential,

also known as the forward discount puzzle or Fama puzzle.

Assuming a constant probability p of making a new portfolio decision has simi-

larities to Calvo price setting, but is more complex. The similarity is most apparent

in the approximated portfolio expression that we derive. The portfolio depends

in expected returns because expected excess returns are divided by second order moments (e.g.

the variance of the excess return) in optimal portfolios.
4In a similar spirit, the literature on limited arbitrage has documented various cases of demand

shocks, e.g., see Gromb and Vayanos (2010).
5Two of the papers they cite are Blanchard et al. (2015) and Hau, Massa, and Peress (2010).

Blanchard et al. (2015) provide evidence that foreign exchange intervention, an example of a

financial shock, has a significant effect on exchange rates. Hau, Massa, and Peress (2010) show

that after a change in the weights of the MSCI World Equity Index, countries that see their

weight increase experience capital inflows and a currency appreciation. The portfolio response

to the re-indexing is itself evidence of portfolio frictions as it suggests that it is costly to deviate

from the benchmark. Also relevant is Rey (2013), who finds that changes in the VIX (a measure

of stock price risk or risk-aversion) affects asset prices and cross-border financial flows.
6See Campbell, Lo and MacKinlay (1997) for a textbook discussion and Cochrane (2007) for

further evidence.
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on the present discounted value of expected future excess returns and risk. Under

Calvo price setting the optimal price depends on the present discounted value of

expected future marginal costs. In both cases the discount factor is the same,

equal to 1− p times the time discount rate.

But adding the friction to portfolio choice significantly complicates the solution.

It raises the number of state variables from 5 to 15 and control variables from 9

to 15. Seven of the additional state variables are associated with lagged portfolio

decisions, one is lagged relative wealth, and the other two are lagged financial

shocks; none of these terms matter if portfolios adjust immediately. The additional

control variables include variables that summarize the expected products of future

excess returns and stochastic discount factors (beyond the next period) that enter

the portfolio Euler equations. The Taylor projection method used to solve the

model involves local linear solutions at many nodes of the ergodic state space,

which are then combined into a global solution through modified Shepard’s inverse-

weighting interpolation.

Our approach differs from the related literature on infrequent portfolio ad-

justment. Most of this literature assumes that agents adjust their portfolios in a

staggered way every T periods.7 In empirical applications this has the drawback

that it generates a significant discontinuity in the impulse response to shocks that

happens T periods after the shock. This occurs because the initial group of infre-

quent traders who change their portfolio at the time of the shock will change their

portfolio again T periods later, with predictable certainty. The anticipation of this

adjustment by other traders significantly affects the equilibrium. The constant

probability setup that we adopt here implies more smoothness as the agents who

change their portfolio at the time of a shock will change their portfolio again at

varying dates in the future. It also has the advantage of a cleaner aggregation.

We do not need to keep track of all generations of agents by the time of their last

portfolio decision. Only portfolios from one period ago enter in the state space.8

7For recent contributions, see Abel et. al (2007), Bacchetta and van Wincoop (2010), Bo-

gousslavsky (2016), Chien et al. (2012), Duffie (2010), Greenwood et al. (2018) and Hendershott

et al. (2013). Earlier papers examine the impact of infrequent portfolio adjustments taking the

process of asset returns as exogenous, e.g. see Lynch (1996) or Gabaix and Laibson (2002).
8An alternative approach to model gradual portfolio adjustment is to assume a cost of adjust-

ing portfolios, as in Vayanos and Woolley (2012), Gârleanu and Pedersen (2013), Bacchetta and

van Wincoop (2019) and Bacchetta, Tièche and van Wincoop (2020). This significantly simplifies

the portfolio problem, but is of course more ad hoc.
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The remainder of the paper is organized as follows. Section 2 develops the

model. Section 3 discusses the global solution method. Section 4 discusses an

approximation of the optimal portfolio in order to develop intuition. Section 5

contains a numerical illustration. Section 6 concludes.

2 Model

There are two countries, Home (H) and Foreign (F ). There is a single good. In

both countries there is a continuum of agents on the interval [0, 1] who have infinite

lives and make decisions about consumption and portfolio allocation. Agents of

both countries can hold three assets: Home and Foreign equity and a risk-free

bond.

2.1 Infrequent Decision Making

The key aspect of the model is infrequent decision making about consumption and

portfolios. Analogous to Calvo price setting, we assume that agents make new

decisions with a probability p. However, infrequent decision making only affects

portfolio choice: we assume an intertemporal elasticity of substitution of 1, which

implies that optimal consumption is a constant fraction of wealth. Agents therefore

do not need to rethink their consumption choice. For portfolio choice we assume

that the fraction 1 − p of agents that does not make new portfolio decisions will

hold their portfolio shares constant until the time comes that they make a new

portfolio decision.9

2.2 Assets

Agents can invest in Home equity, Foreign equity and a one-period risk-free bond.

The number of equity shares is normalized to 1 in both countries, while bonds are

9An alternative, not explored here, is that agents hold the quantity of asset holdings constant.

This is analogous to a buy-and-hold portfolio, in which case there is no rebalancing. In our

specification, even the agents that do not make new portfolio decisions still trade to rebalance

their portfolio. This can for example be achieved by investing in a mutual fund. While in reality

a combination of both is realistic, this would significantly complicate our analysis. The findings

by Bacchetta, Tièche and van Wincoop (2020) for foreign investment by US mutual funds imply

more sluggishness in deviating from past portfolio shares than from a buy-and-hold portfolio.
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in zero net supply. The gross interest rate on the bond is denoted Rt. The returns

on Home and Foreign equity from t to t+ 1 are

RH,t+1 =
QH,t+1 +DH,t+1

QH,t

(1)

RF,t+1 =
QF,t+1 +DF,t+1

QF,t

, (2)

where QH,t and QF,t are the prices of Home and Foreign equity shares and DH,t,

DF,t are dividends. Dividends follow an AR process in logs:

dH,t+1 = (1− ρd)d+ ρddH,t + εdH,t (3)

dF,t+1 = (1− ρd)d+ ρddF,t + εdF,t. (4)

The vector (εdH,t, ε
d
F,t)
′ of dividend shocks has a N(0,Ωd) distribution.

2.3 Budget Constraints

We focus mostly on describing Home agents. For Foreign agents we simply need

to replace the H with an F . Consider agent i in the Home country who makes a

new portfolio decision at time t. First some notation is in order. Let W i
H,t be the

wealth of the agent at the start of period t and cwiH,t the fraction of wealth that is

consumed. The remainder is then invested in the three assets. A fraction ziHH,t is

invested in Home equity and ziHF,t in Foreign equity. The remainder is invested in

the bond. We also denote z̃HH,t and z̃HF,t as the average portfolio shares of all Home

agents that make new portfolio decisions at time t. In equilibrium ziHH,t = z̃HH,t

and ziHF,t = z̃HF,t for investors making new portfolio decisions at time t. But we

will make this substitution only after deriving the first-order conditions for agent

i. For Foreign agents we denote the fractions allocated to the Home and Foreign

equity as ziFH,t and ziFF,t.

Wealth of agent i making a new consumption and portfolio decision at time t

then evolves according to

W i
H,t+1 = (1− cwiH,t)W i

H,tR
p,H,i
t+1 (5)

where the portfolio return is

Rp,H,i
t+1 = Rt + ziHH,t(RH,t+1 −Rt) + ziHF,t(e

−τH,tRF,t+1 −Rt) +

+z̃HF,t(1− e−τH,t)RF,t+1. (6)
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Here τH,t is a tax on Foreign investment, which will be discussed below. The

aggregate of this tax across all Home agents making a portfolio decision at time

t is reimbursed through the last term of (6). This assures that it will only affect

portfolio allocation, not overall wealth accumulation. For Foreign agents the tax

applies to the Home asset.

Wealth of Home agent i who does not make new consumption/portfolio deci-

sions at time t, and last made new decisions at t− j, evolves according to

W i
H,t+1 = (1− cwiH,t−j)W i

H,tR
p,H,i,t−j
t+1 (7)

where the portfolio return is

Rp,H,i,t−j
t+1 = Rt + ziHH,t−j(RH,t+1 −Rt) + ziHF,t−j(e

−τH,t−jRF,t+1 −Rt) +

+z̃HF,t−j(1− e−τH,t−j)RF,t+1. (8)

The portfolio return has an extra t − j superscript to denote when consump-

tion/portfolio decisions were last made. The consumption-wealth ratio and port-

folio shares are those chosen at t − j. The tax on Foreign investment is also at

t− j as it is held constant until a new portfolio decision is made.

After deriving the portfolio Euler equations, we will substitute ziHH,t = z̃HH,t

and ziHF,t = z̃HF,t. The same is done for portfolio shares prior to time t. The

portfolio return of agents who last made a portfolio decision at time t− j is then

Rp,H,t−j
t+1 = Rt + z̃HH,t−j(RH,t+1 −Rt) + z̃HF,t−j(RF,t+1 −Rt) (9)

The tax τH,t−j no longer enters.

2.4 Financial Shocks

Equation (6) introduces a cost τH,t of investing in Foreign equity that reduces the

return that Home agents earn on Foreign equity. There is an analogous cost τF,t of

investing in Home equity by Foreign agents. These costs play two roles. First, their

mean level can be set to generate realistic average portfolio home bias. Second,

changes in these costs generate exogenous portfolio shifts, which we will refer to

as financial shocks. We assume that they follow AR processes:

τH,t = τ + ρτ (τH,t−1 − τ) + ετH,t (10)

τF,t = τ + ρτ (τF,t−1 − τ) + ετF,t (11)

7



where the vector (ετH,t, ε
τ
F,t)
′ of financial shocks has a N(0,Ωτ ) distribution. Finan-

cial shocks, defined as exogenous portfolio shifts unrelated to endogenous changes

in expected returns and risk, can be introduced in many other ways. In the litera-

ture they sometimes are modeled in the form of noise trade, liquidity trade, hedge

trade, time-varying risk-bearing capacity or time-varying investment opportuni-

ties.10 We do not wish to take a strong stand on what the exact origin of these

portfolio shocks is.

2.5 Bellman Equations

Agents are assumed to have Rince preferences, which for any agent (from Home

or Foreign) we can write as

ln(Vt) = max
ct,zt

{
(1− β) ln(ct) + β ln

([
EtV

1−γ
t+1

] 1
1−γ
)}

, (12)

where ct is consumption and zt the vector of portfolio shares. This implies an

intertemporal elasticity of substitution (IES) of 1 and a rate of risk aversion of γ.

Let V n,i
t be the value function of Home agent i who makes new consump-

tion/portfolio decisions at time t. Similarly, V o,i,t−j
t is the value function of Home

agent i who does not make new decisions at time t and who last made a con-

sumption/portfolio decisions at t− j. Here o stands for “old”. For either of these

agents, there is a probability p that they make a new portfolio decision at t+1 and

a probability 1− p that they do not. We can then write the Bellman equations for

these respective agents as

ln(V n,i
t ) = max

cwiH,t,z
i
HH,t,z

i
HF,t

{
(1− β) ln(cwiH,tW

i
H,t)+

β

1− γ
ln
(
pEt

(
V n,i
t+1

)1−γ
+ (1− p)Et

(
V o,i,t
t+1

)1−γ)}
(13)

ln(V o,i,t−j
t ) = (1− β) ln(cwiH,t−jW

i
H,t) +

β

1− γ
ln
(
pEt

(
V n,i
t+1

)1−γ
+ (1− p)Et

(
V o,i,t−j
t+1

)1−γ)
. (14)

The value functions will be proportional to the wealth of the agent. We will

10For different ways of modeling the portfolio shocks, see Bacchetta and van Wincoop (2006),

Dow and Gorton (1995), Gabaix and Maggiori (2015), He and Wang (1995), Spiegel and Sub-

rahmanyam (1992) and Wang (1994).
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therefore write

V n,i
t = W i

H,te
fn(St) (15)

V o,i,t−j
t = W i

H,te
fo(St,ziHH,t−j ,z

i
HF,t−j ,z̃HF,t−j ,τH,t−j). (16)

Here St is a vector of aggregate state variables, which will be defined below. Apart

from the wealth of the agent, the value function of an agent making new consump-

tion/portfolio decisions at time t only depends on the aggregate state St through

the function fn. The value function of an agent who last made a portfolio decision

at t − j also depends, through the function f o, on the portfolio shares at time

t − j, ziHH,t−j and ziHF,t−j.
11 It also depends on z̃HF,t−j and τH,t−j, as they affect

portfolio returns Rp,i,H,t−j
t+s until new portfolio decisions are made. The functions

fn and f o evaluated at their respective state variables at time t are also denoted

fnH,t and f o,i,t−jH,t for Home agents.

Substituting (15) and (16) into (13) and (14), and using the wealth accumula-

tion equations, we can write the Bellman equations as

fnH,t = max
cwiH,t,z

i
HH,t,z

i
HF,t

{
(1− β)ln(cwiH,t) + β ln(1− cwiH,t) +

β

1− γ
ln

(
Et

(
pe(1−γ)f

n
H,t+1 + (1− p)e(1−γ)f

o,i,t
H,t+1

)(
Rp,H,i
t+1

)1−γ)}
(17)

f o,i,t−jH,t = (1− β)ln(cwiH,t−j) + β ln(1− cwiH,t−j) +

β

1− γ
ln

(
Et

(
pe(1−γ)f

n
H,t+1 + (1− p)e(1−γ)f

o,i,t−j
H,t+1

)(
Rp,H,i,t−j
t+1

)1−γ)
. (18)

When the individual-specific portfolio shares ziHH,t−j and ziHF,t−j are evaluated

at the equilibrium portfolio shares z̃HH,t−j and z̃HF,t−j for agents last making port-

folio decisions at t− j, we omit the i supercript and write

f o,t−jH,t+1 = f o(St+1, z̃HH,t−j, z̃HF,t−1, z̃HF,t−j, τH,t−j)

It is also useful to define

λtHH,t+1 =
∂f o,i,tH,t+1

∂ziHH,t
(19)

λtHF,t+1 =
∂f o,i,tH,t+1

∂ziHF,t
. (20)

11In principle the lagged consumption wealth decision cwiH,t−j should enter as well, but we

will see that this remains constant over time.
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These derivatives are again evaluated by setting the agent i-specific portfolio shares

equal to z̃HH,t and z̃HF,t.

2.6 Portfolio Euler Equations

Maximizing the right hand side of (17) with respect to cwiH,t, z
i
HH,t and ziHF,t, using

the portfolio return (6), gives three first-order conditions. The first-order condition

with respect to the consumption-wealth ratio simply gives cwiH,t = 1− β. Agents

therefore always consume a fraction 1 − β of their wealth, so that the infrequent

decision making only matters for portfolio choice. Home agent i then invest βW i
H,t

in the three assets.

For the portfolio Euler equations it is useful to define scaled stochastic discount

factors:

mn,t−j
H,t+1 =

[
Rp,H,t−j
t+1

]−γ
e(1−γ)f

n
H,t+1

mo,t−j
H,t+1 =

[
Rp,H,t−j
t+1

]−γ
e(1−γ)f

o,t−j
H,t+1 .

These are scaled stochastic discount factors for an agent who last made portfolio

decisions at t − j, conditional on the agent respectively making a new portfolio

decision at t+ 1 and not making a new portfolio decision at t+ 1. We also define

an unconditional stochastic discount factor as mt−j
H,t+1 = pmn,t−j

H,t+1 + (1−p)mo,t−j
H,t+1.

12

After taking the derivatives of (17) with respect to ziHH,t and ziHF,t, and then

setting these portfolio shares equal to z̃HH,t and z̃HF,t, we obtain the following

portfolio Euler equations

Etm
t
H,t+1(RH,t+1 −Rt) + (1− p)Etmo,t

H,t+1R
p,H,t
t+1 λ

t
HH,t+1 = 0 (21)

Etm
t
H,t+1(e

−τH,tRF,t+1 −Rt) + (1− p)Etmo,t
H,t+1R

p,H,t
t+1 λ

t
HF,t+1 = 0. (22)

The first terms in (21)-(22) are the expected excess returns discounted with the

pricing kernel. When agents make new portfolio decisions each period (p = 1),

equating these first terms to zero gives the portfolio Euler equations. The second

term applies when p < 1, so it specifically relates to infrequent portfolio decisions.

It captures the impact of future expected returns and risk beyond period t + 1,

12The SDF for Rince preferences is [ct/ct+1][V 1−γ
t+1 /EtV

1−γ
t+1 ]. After substituting the solution

for consumption, wealth accumulation, (15)-(16), and multiplying by βEtR
p,H,t−j
t+1 mt−j

H,t+1, the

scaled discount factors are obtained.
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which affect λtHH,t+1 and λtHF,t+1. Knowing that they may not get an opportunity to

change their portfolio allocation again for some time, agents that make portfolio

decisions at time t need to incorporate beliefs about expected returns and risk

beyond time t+ 1.

We can then also write the Bellman equations as

e(1−γ)f
n
H,t/β = αEtm

t
H,t+1R

p,H,t
t+1 (23)

e(1−γ)f
o,t−1
H,t /β = αEtm

t−1
H,t+1R

p,H,t−1
t+1 (24)

where α = (1−β)(1−γ)(1−β)/ββ1−γ. These are for an agent who last made a portfolio

decision at time t and t− 1.

In the first-order conditions λtHH,t+1 and λtHF,t+1 play an important role. Their

values one period earlier, so λt−1HH,t and λt−1HF,t, will be control variables to be solved

as a function of the state at time t. Expressions for them can be obtained by

considering an agent who last made a portfolio decision at time t−1, but does not

make a new portfolio decision at time t. Taking derivatives of (18) for j = 1 with

respect to ziHH,t−1 and ziHF,t−1, and then setting the agent i portfolio shares equal

to z̃HH,t−1 and z̃HF,t−1, we have

EtR
p,H,t−1
t+1

(
mt−1
H,t+1λ

t−1
HH,t − θm

o,t−1
H,t+1λ

t−1
HH,t+1

)
= βEtm

t−1
H,t+1(RH,t+1 −Rt) (25)

EtR
p,H,t−1
t+1

(
mt−1
H,t+1λ

t−1
HF,t − θm

o,t−1
H,t+1λ

t−1
HF,t+1

)
= βEtm

t−1
H,t+1(e

−τH,t−1RF,t+1 −Rt) (26)

where θ = β(1−p). While we will not do so, one can use these to write the portfolio

Euler equations (21)-(22) as equating an expected present discounted value of all

future excess returns, multiplied by appropriate stochastic discount factors, equal

to zero.

2.7 Market Clearing Conditions

There are three market clearing conditions: for Home equity, Foreign equity and

bonds. Denote zjk,t =
∫ 1

0
zijk,tdi for j = H,F and k = H,F . Similarly, aggregate

Home and Foreign wealth is WH,t =
∫ 1

0
W i
H,tdi and WF,t =

∫ 1

0
W i
F,tdi. There is

an aggregation issue in that asset demand involves the product of wealth and

portfolio shares. Specifically, β
∫ 1

0
zijk,tW

i
j,tdi is the total demand for country k

equity by agents from country j. We have
∫ 1

0
zijk,tW

i
j,tdi = zjk,tWj,t+cov(zijk,t,W

i
j,t),

11



where the latter is a cross-sectional covariance term.13 We ignore the covariance

term. This turns out to be numerically very accurate, with the correlation between∫ 1

0
zijk,tW

i
j,tdi and zjk,tWj,t above 0.9997 for all j, k based on the solution of the

model with the parameterization in Table 2 that we discuss in Section 5. The

accuracy was checked by simulating the solution over 100,000 months, keeping

track of the wealth and portfolio shares of 100 million agents as an approximation

of the continuum of agents in the model.

Market clearing conditions will then be

zHH,tWH,t + zFH,tWF,t = QH,t/β (27)

zHF,tWH,t + zFF,tWF,t = QF,t/β (28)

(1− zHH,t − zHF,t)WH,t + (1− zFH,t − zFF,t)WF,t = 0. (29)

2.8 Control and State Variables

The control and state variables are respectively

cvt =
{
qH,t, qF,t, rt, z̃HH,t, z̃HF,t, z̃FF,t, z̃FH,t, f

n
H,t, f

n
F,t, cvH,t, cvF,t

}′
(30)

svt = {St, sH,t, sF,t}′ (31)

where qH,t, qF,t and rt are the log equity prices and interest rate, and

cvH,t =
{
f o,t−1H,t , λt−1HH,t, λ

t−1
HF,t

}
cvF,t =

{
f o,t−1F,t , λt−1FH,t, λ

t−1
FF,t

}
St =

{
dH,t, dF,t, τH,t, τF,t, w

D
t , w

D
t−1, z

A
H,t−1, z

D
H,t−1, z

D
F,t−1

}
sH,t = {τH,t−1, z̃HH,t−1, z̃HF,t−1}
sF,t = {τF,t−1, z̃FH,t−1, z̃FF,t−1} .

The last five state variables in St are relative log wealth wDt = ln(WH,t)− ln(WF,t),

wDt−1, z
A
H,t−1 = ωt−1zHH,t−1 + (1 − ωt−1)zFH,t−1, z

D
H,t−1 = zHH,t−1 − zFH,t−1 and

13In theory the covariance term may not be exactly zero. Agents are picked at random when

chosen with probability p to make new portfolio decisions, and independent of their wealth they

all make the same portfolio decision. But ziHH,t and W i
H,t could be cross sectionally correlated

as a result of wealth accumulation after the most recent portfolio decision. For example, agents

with a large portfolio share in the Home country will have seen their wealth rise a lot if Home

equity returns have recently been relatively high.
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zDF,t−1 = zFF,t−1 − zHF,t−1. Here ωt = WHt/(WHt + WFt) is the relative wealth of

the Home country.14

The vector St of nine state variables determines asset prices, the interest rate,

the new time t portfolio shares and the Bellman variables fnH,t and fnF,t. The

additional Home control variables cvH,t depend on both St and the additional state

variables sH,t. Similarly, the additional Foreign control variables cvF,t depend on

both St and the additional state variables sF,t. Although the control variables cvH,t

and cvF,t are not of separate interest to us, we need to keep track of them as their

values one period later enter the portfolio Euler equations.

Regarding the evolution of the state variables St, the processes for dividends

and taxes are given by (3), (4), (10), and (11). The portfolio share zHH,t evolves

according to

zHH,t = (1− p)zHH,t−1 + pz̃HH,t (32)

with similar equations for zHF,t, zFH,t, and zFF,t. Using (5) and (9), we have15

wDt+1 = wDt + ln (Rt + zHH,t(RH,t+1 −Rt) + zHF,t(RF,t+1 −Rt))−
ln (Rt + zFH,t(RH,t+1 −Rt) + zFF,t(RF,t+1 −Rt)) . (33)

These dynamic equations for portfolio shares and wealth also tell us how the last

three state variables in St evolve.16

There are two reasons why only one-period lagged portfolios are in the state

space. First, (32) implies that the aggregate portfolio share zHH,t depends on the

one-period lagged portfolio share zHH,t−1 and the new portfolio share chosen at

14Adding up the market clearing conditions, the sum of wealth of both countries is proportional

to the sum of their asset prices, so aggregate wealth is not a state variable. The lagged bond

market equilibrium condition implies ωt−1(zHH,t−1+zHF,t−1)+(1−ωt−1)(zFH,t−1+zFF,t−1) = 1.

We therefore cannot use lagged relative wealth and all four lagged portfolio shares as state

variables. We also do not use the four lagged portfolio shares as state variables. In a symmetric

state, where ωt−1 = 0.5, the four lagged portfolio shares are locally in a linear relationship

(adding to 2). Also note that zAF,t−1 = ωt−1zHF,t−1 +(1−ωt−1)zFF,t−1 = 1−zAH,t−1 is redundant

from the time t− 1 bond market clearing condition.
15This uses the same approximation that we made for the market clearing conditions, that∫ 1

0
zijk,tW

i
j,tdi = zjk,tWj,t for j = H,F and k = H,F . As discussed, this is numerically extremely

accurate.
16Relative wealth is stationary in the model. In Appendix D we discuss the logic behind the

stationarity and report the ergodic distribution of relative wealth wDt for the parameterization

in Table 2 that is discussed in Section 5.
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time t. The lagged portfolio share zHH,t−1 aggregates all portfolio shares chosen at

t− 1 and earlier. Second, the new portfolio share z̃HH,t chosen at time t depends

through the portfolio Euler equation on beliefs about λtHH,t+1. The same variable

one period earlier, λt−1HH,t, is one of the control variables. It depends on portfolio

choice at t− 1, but not earlier. We do not need to solve for λt−jHH,t for j > 1, which

depends on portfolio shares prior to t− 1.

2.9 Definition of Equilibrium

Appendix A lists the Foreign country portfolio Euler equations, Bellman equations

and first-order difference equations for λt−1FH,t and λt−1FF,t. These are all derived

analogously to those for the Home country.

Definition 1 An equilibrium consists of
{
qH,t, qF,t, rt, z̃HH,t, z̃HF,t, z̃FF,t, z̃FH,t, f

n
H,t, f

n
F,t

}
as functions of St,

{
f o,t−1H,t , λt−1HH,t, λ

t−1
HF,t

}
as functions of St and sH,t, and{

f o,t−1F,t , λt−1FH,t, λ
t−1
FF,t

}
as functions of St and sF,t such that the following are sat-

isfied: (i) The Home portfolio Euler equations (21)-(22), (ii) the Home Bellman

equations (23)-(24), (iii) the Home λ difference equations (25)-(26), (iv) the For-

eign country analogues of (21)-(26) shown in Appendix A, and (v) the market

clearing conditions (27)-(29).

3 Solution Method

The model is solved with a global solution method. The large number of state and

control variables (a total of 15 each) makes this challenging when using standard

projection methods. It runs into a dimensionality problem both when control

variables are approximated as step functions on a rectangular grid of state variables

and when they are approximated as polynomial functions that minimize average

equation errors on a large number of points of the state space. Even quadratic

polynomial functions for the control variables applied to the entire ergodic space

(which may not be precise enough) would involve 2040 parameters with 15 state

and control variables.17 We therefore instead follow the Taylor projection method

17The actual number in our case is 1041 as not all control variables depend on all state variables,

but it would still be prohibitive.
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developed in Levintal (2018).18 This involves approximating the solution locally

at various nodes of the state space, and then combining these local solutions to

form the global solution. To this end, it is sufficient for us to use a local linear

approximation of the control variables as a function of state variables. This involves

far fewer parameters, although it needs to be repeated at many points of the state

space. We now describe the various steps involved.

The aim is to find a solution

cvt = g(svt) (34)

Given a particular node in the state space, Taylor projection locally approximates

g(svt) as a polynomial, which in our case will be linear. For a particular node svi

in the state space, this takes the form

cvt = cvi +M i(svt − svi) (35)

where M i is a matrix with a non-zero value in element (j, k) if state variable k

affects control variable j. As discussed, not all control variables depend on all state

variables. There are a total of 153 non-zero coefficients in M i, plus 15 constants

in the vector cvi, for a total of 168 coefficients.

The model can be written in the form

EtF (cvt, cvt+1, svt, svt+1) = 0 (36)

svt+1 = G(svt, cvt, εt+1) (37)

where εt+1 = (εdH,t, ε
d
F,t, ε

τ
H,t, ε

τ
F,t)
′ is the vector of shocks. F consists of the 15

equations listed in Definition 1. Equation (37) describes the evolution of state

variables and is discussed in Appendix B1. Using (35) at both t and t+1, together

with (37), we can write (36) in the form

H(svt) = EtH(svt, εt+1) = 0. (38)

We compute expectations using an order-5 monomial method (Judd, 1998) with

33 integration nodes for the shocks. H(svt) represents the errors of the equations.

At the node svi, the “Taylor” part of “Taylor projection” involves setting both

18Den Haan et al. (2016) develop an analogous method. The method is applied in Fernandez-

Villaverde and Levintal (2017) and Barro et al. (2018) to solve models with rare disasters.
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the level of H and its derivatives with respect to the state variables equal to zero:

H(svi) = 0 and ∂H/∂svt(svi) = 0. These give respectively 15 and 153 constraints

on the 168 parameters {cvi,M i}.19 We compute numerical derivatives using two-

sided finite-differences (using two or five-point stencils makes no difference). We

then solve the 168 parameters {cvi,M i} from the 168 equations.

We first obtain the local solution at the deterministic steady state.20 The other

nodes svi are obtained as follows. Since a rectangular grid is infeasible in such a

high-dimensional problem, we use the approach from Maliar and Maliar (2015).

We generate a long simulation using the linear solution at the symmetric state (10

million periods). We sample every 1000 points to eliminate autocorrelation. From

this sample we construct a set of 150 points using Ward’s clustering algorithm.

We were able to obtain solutions for {cvi,M i} at 120 of these points outside of

the deterministic steady state. We then use symmetry to obtain the solution at

another 120 points. So we have a solution at 241 points. We find that these points

cover the ergodic set sufficiently well.21

To construct the global solution, we use the modified Shepard’s inverse-weighting

interpolation. Define the weights

wi(sv
i, svt) =

w̃i(sv
i, svt)∑241

j=1 w̃j(sv
j, svt)

(39)

where

w̃i(sv
i, svt) =

(
max{0, k − ‖svi − svt‖}

k‖svi − svt‖

)2

.

‖svi − svt‖ is the Euclidean distance and k is set to 4.22 Then

cv(svt) =
241∑
i=1

wi(sv
i, svt)

(
cvi +M i(svt − svi)

)
(40)

19Specifically, all 15 equations depend on St (9 state variables), which gives 135 derivatives.

In addition, the Bellman equation for fo,t−1
Ht and the difference equations for λt−1

HH,t and λt−1
HF,t

also depend on svH,t (3 state variables). This gives an additional 9 derivatives and an analogous

9 derivatives for the Foreign country. This gives a total of 153 derivatives.
20Variables other than portfolio shares are equal to their deterministic steady states. The

portfolio shares are set at zHH = zFF = z̄, zHF = zFH = 1− z̄, where z̄ is set at an empirically

realistic value (see Section 4). The value for τ is set to make sure that also z̃HH = z̃FF = z̄,

z̃HF = z̃FH = 1− z̄ at this symmetric node of the state space.
21If we create a new set of points by simulating the resulting global solution, the new set of

points is very similar.
22Setting k lower than 4 raises Euler equation errors, while setting it higher makes little

difference to the weights.
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Further technical details on the solution can be found in Appendix B.

We also solve the model in the frictionless case where p = 1. The same solution

method is followed, but the solution is significantly faster as there are far fewer

state and control variables. The set of state variables consists of the exogenous

state variables dH,t, dF,t, τH,t, τF,t and relative wealth wDt . The other four state

variables in St, related to lagged relative wealth and portfolio shares, as well as

sH,t and sF,t, are no longer state variables. The additional control variables cvH,t

and cvF,t also disappear. Overall, the number of state variables is reduced from 15

to 5 and the number of control variables is reduced from 15 to 9.

4 Approximate Portfolio Expression

In this section we discuss an approximate portfolio expression in order to develop

intuition about what is driving portfolio allocation in the model.

4.1 Notation

Since our data in the next section applies to equity portfolio shares, we focus on

the equity portfolio. For agents who make new portfolio decisions, the share of the

equity portfolio that is invested in Home equity by respectively Home and Foreign

agents is denoted

z̃eHH,t =
z̃HH,t

z̃HH,t + z̃HF,t

z̃eFH,t =
z̃FH,t

z̃FH,t + z̃FF,t
.

We are particularly interested in the average portfolio share invested in Home eq-

uity, z̃e,At = 0.5(z̃eHH,t + z̃eFH,t). The main effect of infrequent portfolio decisions

relates to the way investors respond to changes in expected excess returns. Ex-

pected excess returns affect the average portfolio share z̃e,At , but not the difference

in portfolio shares, z̃e,Dt = z̃eHH,t− z̃eFH,t, which is a measure of equity home bias.23

Some notation regarding asset returns is in order as well. Asset returns will be

denoted in logs, so rHt = log(RHt), rFt = log(RFt) and rt = log(Rt). The world

23Moreover, at least up to the time of the Great Recession, there has been a trend decrease in

home bias for reasons that have little to do with gradual portfolio adjustment.
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equity return is rAt+1 = 0.5(rH,t+1 + rF,t+1). We define the excess returns of stocks

over bonds in the two countries as erH,t+1 = rH,t+1−rt and erF,t+1 = rF,t+1−rt. The

excess return of Home equity over Foreign equity is denoted ert+1 = rH,t+1− rF,t+1

and we denote ert+1,t+i = ert+1+...+ert+i as the cumulative excess return of Home

equity over Foreign equity over the next i periods. Other cumulative returns are

denoted analogously. We also denote ersumt+i = erH,t+i + erF,t+i.

4.2 Approximated Portfolio

To derive approximate portfolio shares, we follow a methodology similar to Camp-

bell and Viceira (1999), although the portfolio problem is considerably more com-

plicated here. After a significant amount of algebra described in the Online Ap-

pendix,24 we find the following approximate expression for the average Home equity

portfolio share:

z̃e,At = 0.5 +
1

D

∞∑
i=1

θi−1Etert+i +
µ

(1− θ)D
τDt + ht (41)

where µ = 0.5 + (z̄ − 0.5)D/d and

D =
∞∑
i=1

θi−1 (γ ¯vart(ert+i) + 2(γ − 1) ¯covt(ert+i, ert+1,t+i−1)) (42)

d =
∞∑
i=1

θi−1
(
γ ¯vart(er

sum
t+i ) + 2(γ − 1) ¯covt(er

sum
t+i , er

sum
t+1,t+i−1)

)
(43)

Moments with a bar refer to the mean of these moments.

The optimal portfolio depends on three terms. The first is a present discounted

value of expected future excess returns (international equity return differentials).

The second is proportional to τDt = τHt−τFt. This term is associated with financial

shocks. τDt rises when the cost of investment abroad rises for Home agents relative

to Foreign agents. This leads to an exogenous portfolio shift toward Home equity.

24We start by deriving expressions for z̃HH,t, z̃HF,t, z̃FH,t and z̃FF,t using portfolio Euler

equations, Bellman equations, and λ difference equations. We log-linearize portfolio returns,

though we treat the new time t portfolio shares as unknown parameters that need to be solved

and do not linearize around these variables. Most expectations take the form of Ete
x, where x

includes log asset returns and the Bellman variables. Assuming log normality, these expectations

are approximated as eEx+0.5var(x), where Ex and var(x) are moments that vanish to zero in the

deterministic steady state. We then approximate this as 1 + Ex+ 0.5var(x).

18



The third term is ht, which will be discussed further below. It involves various

hedge terms associated with time-varying expectations of future risk.

4.3 Comparison to Frictionless Portfolio

It is instructive to compare (41) to what it would be when p = 1:

z̃e,At =
Etert+1

γ ¯vart(ert+1)
+

µ

γ ¯vart(ert+1)
τDt + ht (44)

We will focus here on the expected excess return term. When p < 1 the average

share invested in Home equity depends on the present discounted value of all

expected future excess returns of Home equity over Foreign equity, as opposed

to just the expected excess return over the next period as in (44). The effective

horizon that investors have is longer as they do not know when they will make

a portfolio decision again. The discount rate is θ = β(1 − p). A lower value

of p therefore implies a longer effective horizon when decisions are made and a

relatively higher weight on expected excess returns further into the future. There

is a close analogy between this optimal portfolio and the optimal price that a firm

sets under Calvo price setting. The latter assumes that there is a probability p of

firms setting a new price each period. When a firm sets a new price, the expression

for the optimal price (e.g. page 45 of Gali, 2008) depends on a weighted average of

expected future marginal costs, with the weight declining at the same rate β(1−p)
as in the optimal portfolio expression (41).

A lower p changes not just the relative weights of expected excess returns at

different horizons, but also the absolute weight. It implies that investors are less

responsive to expected excess returns in the near future. To see this, consider

the portfolio response to a change in Etert+1, which has a coefficient 1/D. When

p = 1, D = γ ¯vart(ert+1), as seen in (44). When p < 1, the expression for D is more

complicated. The term in D multiplying θi−1 is approximately equal to γ times the

component of the variance of ert+1,t+i that is associated with the time t+ i excess

return, cov(ert+i, ert+1,t+i). D therefore depends on long run excess return risk,

with a longer effective horizon when p is smaller. This higher risk implies a weaker

portfolio response to the expected excess return next period. If, for illustrative

purposes, for p < 1 we simplify the expression for D by ignoring the second

term in (42), which depends on autocorrelations of excess returns, and assume

the same variance of all future excess returns, we have D = γvart(ert+1)/(1− θ).
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The portfolio response to a change in Etert+1 is therefore a fraction 1 − θ of the

portfolio response when p = 1. The smaller the p, the weaker the response.

There is a second reason why investors respond less to expected excess returns

when p < 1, which is simply that only a limited fraction of investors make a

new portfolio decision at any time. Analogous to z̃e,At , we define the overall port-

folio share ze,At as the average of zHH,t/(zHH,t + zHF,t) and zFH,t/(zFH,t + zFF,t).

Linearization implies that it evolves according to

ze,At = (1− p)ze,At−1 + pz̃e,At (45)

For a given response of z̃e,At to changes in expected excess returns, this implies a

weaker and more gradual response of the overall portfolio share ze,At .

The weaker portfolio response to expected excess returns under the portfolio

friction is a key aspect of the model. It implies that larger equilibrium changes in

expected excess returns are needed to clear the market when there are financial

shocks associated with an exogenous change in τDt . Larger changes in expected

excess returns imply larger changes in the relative asset price, which in turn also

implies larger changes in equilibrium relative asset supplies and portfolios.

4.4 Hedge Terms

The last term in (41) is

ht =
1− γ
D

∞∑
i=1

θi−1covt(ert+i, r
A
t+1,t+i)

1− γ
D

∞∑
i=1

θi−1
(
covt(erH,t+i, (1− µ)fnH,t+i + µfnF,t+i)− covt(erF,t+i, µfnH,t+i + (1− µ)fnF,t+i)

)
+

(1− 2z̄)2

d

∞∑
i=1

θi−1covt(r
A
t+i − rt+i−1, (γ − 1)ert+1,t+i−1 + γert+i).

The terms in ht are hedge terms associated with time-varying risk. These

involve the variance and covariance of asset return variables and the Bellman vari-

ables fnH,t+s, f
n
F,t+s. Analogous to expected asset returns, it is not just uncertainty

about asset returns and Bellman variables over the next period that affects port-

folios, but rather perceived risk at all future dates, with discount rate θ. In what

follows, assume that γ > 1. We will focus on the first and second terms. The last

hedge term is less intuitive and is discussed in Appendix C.
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The first term in ht implies that the average share invested in Home equity is

higher when Home equity has a relatively high payoff (compared to Foreign equity)

in bad future states where the world equity return has been low. Home equity is

then an attractive hedge against such bad states. The second term of ht captures

a hedge against future changes in expected portfolio returns. The approximated

solution for fnH,t is

fnH,t = Et

∞∑
i=1

βir̄p,Ht+i (46)

where r̄p,Ht+i = rt+i−1+z̄erH,t+i+(1−z̄)erF,t+i is the Home portfolio return evaluated

at the mean of portfolio shares. An analogous solution applies to fnF,t. The second

term of (46) then says that the Home portfolio share is high when Home equity

returns are relatively high in bad future states where subsequent future expected

portfolio returns are low.

5 Numerical Illustration

In this section we provide a numerical illustration of the impact of infrequent port-

folio adjustment on asset prices, excess returns and portfolios. In this illustration

one period will equal one month. We first discuss the calibration of model param-

eters. Next we show that the global solution for z̃e,At is almost identical to the sum

of the first two terms in (41), the expected excess return term and the financial

shock term. The hedge term ht is not important quantitatively. After discussing

two parameterizations where p = 1, we compare these frictionless cases to the

case of infrequent portfolio decisions, focusing on asset prices, excess returns and

portfolios. We discuss both impulse responses to dividend and financial shocks

and various moments involving these variables based on model simulation, which

are compared to the data.

5.1 Calibration

The numerical solution when p < 1 is very time consuming. We therefore consider

just one set of parameters. The calibration is shown in Table 2. It involves the

parameters of the dividend and financial shock processes, as well as p, γ and β.

The most important parameter is clearly p. We set it at 0.04, so that agents

on average change their portfolio once in two years (25 months). The Investment
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Company Institute reports that only 40 percent of US investors change their stock

or mutual fund portfolio during any particular year. In the year 2001, 61 percent

made no change. In 2007, 57 percent made no change.25 p = 0.04 implies that 61

percent of agents will make no portfolio change in any particular year.26 We can

also draw a comparison to BTW for US mutual funds. They regress US mutual

fund portfolio shares in foreign countries on last month’s portfolio share and the

present discounted value of expected future excess returns. The coefficient on last

month’s portfolio share is an estimate of 1 − p in our framework. Their results

imply p = 0.07. This gives equal weight to all mutual funds. For large mutual

funds, which matter more in the aggregate, their estimates imply p = 0.05.

We set γ = 10 and β = 0.99668. Risk aversion of 10 is simply adopted from

Bacchetta and van Wincoop (2010), who use their model of infrequent portfolio

adjustment to account for the forward discount puzzle. They provide a variety of

motivations for this choice. A time discount rate of 0.99668 implies a risk-free rate

that is about 4 percent annualized in the risky steady state.

The parameters of the dividend process are calibrated to the United States

(Home) and the rest of the world (Foreign). The latter, also referred to as ROW,

consists of an aggregate of 44 foreign countries. We use 230 months of MSCI data,

from November 1995 to December 2014. Data on earnings are used as opposed to

dividends as the latter do not include share repurchases, which have become the

preferred method of shareholder payments.27 Defining dDt = dHt − dFt and dAt =

0.5(dHt +dFt) as the relative and average log dividend, we have dDt = ρdd
D
t−1 + εd,Dt

and dAt = ρdd
A
t−1 + εd,At . We set ρd = 0.9767 as the autocorrelation of dDt . We

then compute εd,Dt and εd,At and use their standard deviations, which are reported

in Table 2. We set d = (1− β)/β, which implies an annualized dividend yield of 4

25The 2001 number is from Equity Ownership of America, 2002, while the 2007 number is from

Equity and Bond Ownership in America, 2008.
26Even less frequent portfolio changes apply to retirement accounts. Ameriks and Zeldes (2004)

find that over a 10-year period, 44 percent of households made no changes at all to their TIAA-

CREF portfolio allocations. This corresponds to p = 0.007. Similarly, Mitchell et al. (2006)

find that 80 percent of 1.2 million workers with 401(k) plans initiated no trades over a two year

period. This corresponds to p = 0.01.
27The MSCI earnings data is a 12-month trailing average. Companies do not report monthly

dividends. The measure is reasonable if dividends plus repurchases keep up with the 12-month

trailing average of earnings. The correlation between dHt − dFt computed based on relative

earnings and relative dividends is 0.81.
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percent in steady state.

There are analogously also four financial shock parameters. We set τ equal to

0.0002, which implies realistic equity home bias in the risky steady state in the

sense of matching the average of the fractions that US and ROW investors invest in

respectively the US and ROW. Over the November 1995 to December 2014 sample

this average is 0.7634. The portfolio data are discussed in Section 5.5. Analogous

to dividends, we define the difference and average of τHt and τFt as τDt and τAt .

These follow AR processes with AR coefficients of ρτ and innovations of ετ,Dt and

ετ,At . We set ρτ and the standard deviation of these two innovations at the values

shown in Table 2. As we will see in Section 5.5, this implies properties of the excess

returns that are reasonably close to the data. This includes the standard deviation

and autocorrelation of ert+1 and the correlation between erH,t+1 and erF,t+1.

5.2 Approximated Solution

Equation (41) gives a linear approximation of the solution of z̃e,At as the sum of

three terms. We will show that the global solution is very close to just the sum of

the first two terms, so ignoring the hedge term. This approximated solution is

z̃e,A,approximatet = 0.5 +
1

D

∞∑
i=1

θi−1Etert+i +
µ

(1− θ)D
τDt . (47)

To show that this is close to z̃e,At from the global solution, we simulate the model

over 230 months, the sample length used for calibration and to compute data mo-

ments in Section 5.5. During each month the present discounted value of expected

excess returns is computed by generating 100,000 different futures of 150 months.28

The parameters D and µ are computed using the mean over the 230 months of

the present discounted value of the moments in the expressions for D and d, again

using 100,000 futures of 150 months to compute the present discounted value of

the moments.

Figure 1 shows both the global solution for z̃e,At and the approximated solution

(47). The two lines are extremely close, with a correlation of 0.964. Sometimes

they are indistinguishable and overlap. Any deviation that is left is caused either

by the approximation itself used to derive (41) or the hedge term ht. We have

28Truncating after 150 months is sufficient as θ150 is equal to 0.0013, so that expected excess

returns further into the future get virtually no weight.
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not been able to numerically approximate the time varying hedge term accurately

enough as it would require an even much larger number of futures, but clearly it

does not play a significant role.

This result implies that we can focus on the expected excess return term and

the financial shock term to understand portfolio behavior. The intuition about

the impact of expected excess returns discussed in the previous section, and the

comparison to the frictionless case p = 1, is important to the solution. The ap-

proximation also helps quantify the financial shock in terms of a portfolio shock.

We will define the size of the financial shock as the instantaneous change in ze,At
due to a one standard deviation innovation in ετ,Dt . Using the approximation (47),

this is equal to

p
µ

(1− θ)D
σετ,D . (48)

Measuring the financial shock as a portfolio shock this way allows for easier com-

parison to p = 1, as we will discuss below.

5.3 Two Frictionless Cases

In comparing the solution with p = 0.04 to a frictionless world where p = 1, we

consider two cases, labeled Case 1 and Case 2. These differ only in the magnitude

of the financial shocks. Since all investors face the financial shock when p = 1,

while only 4 percent of investors experience the shock when p = 0.04, the same

size shock to τDt has a much larger portfolio impact when p = 1. In Case 1 the

standard deviations of ετ,Dt and ετ,At are proportionately reduced such that the size

of financial shocks, as measured by (48), remains the same as when p = 0.04.29

In that case a one standard deviation innovation ετ,Dt raises ze,At by 0.0103. In

addition τ is reduced to 0.000083 to keep the fraction invested in domestic equity

at 0.763 in the risky steady state.

In Case 2 all parameters remain the same as in Table 2 for p = 0.04, except

that τ = 0.00013 is set to match home bias. In this case a one standard devi-

ation innovation ετ,Dt raises ze,At by 0.34. This is a huge financial shock, where

exogenously (before general equilibrium effects set in) a two standard deviation

financial shock would raise the average share invested in Home equity from 50% to

29Specifically, the standard deviations of ετ,Dt and ετ,At are both reduced by a factor 232, to

respectively 6.47E − 6 and 2.16E − 7.

24



117% in just one month. The financial shock in Case 2 is so large mainly because

the fraction of investors that face the same shock to τDt is now 25 times as large

as when p = 0.04. While a comparison of p = 0.04 to Case 1 is therefore more

appropriate, Case 2 is nonetheless useful for illustrative purposes.

5.4 Impulse Response Functions

Figure 2 shows the impulse response of the relative log asset price qDt and the

average equity share ze,At in the Home country for both relative dividend shocks

(top two charts) and financial shocks (bottom two charts). The impulse response

functions are shown for p = 0.04 and the two frictionless cases. The relative

dividend shock is a one standard deviation increase in εd,Dt , while the financial

shock is a one standard deviation increase in ετ,Dt .30 The reported impulse response

functions are an average of 10,000 impulse responses that are computed at different

points in the state space after first simulating the model over 10,000 months. For

financial shocks only, Figure 3 reports expected excess returns based on the same

exercise. It shows the expectation at the time of the shock of future expected

excess returns Etert+i and expected cumulative excess returns Etert+1,t+i, both as

a function of i.31 Since expected excess returns are dominated by financial shocks,

we do not show the much smaller expected excess returns for relative dividend

shocks.

Panels A and B of Figure 2 show that the effect of dividend shocks on the

relative price and average portfolio is quite similar in the three scenarios. There is

some slight delayed overshooting when p = 0.04, but it does not markedly affect the

equilibrium. Setting p even smaller would make a difference in that the immediate

impact of the dividend shocks on the relative price and portfolio would be smaller

and there would be more delayed overshooting. But only having four percent of

investors actively changing their portfolio in response to a change in dividends is

sufficient to generate a price and portfolio impact that is similar to the frictionless

case.

30We do not show the impulse response to average shocks as these have no effect on our

variables of interest. They do not operate through expected excess returns, where portfolio

frictions critically come into play.
31These are not impulse response functions, but they are computed from impulse response

functions by assuming that excess returns after the shock at time t are equal to expected excess

returns at time t due to the shock. Numerically we find this to be very accurate.
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The biggest impact of infrequent portfolio choice is with regards to financial

shocks, shown in panels C and D. An increase in τDt leads to a portfolio shift to the

Home country, which raises the relative Home price qDt and the average portfolio

share ze,At in the Home country. We first consider a comparison of p = 0.04 to p = 1

for Case 1, where the financial shock is equal in size. Panels C and D show that

in the frictionless case both the relative asset price and average portfolio remain

virtually unchanged. Exogenous portfolio shifts are easily absorbed by investors

in the frictionless case, without requiring much of a change in the relative price

(Figure 2, panel C) and expected excess return (Figure 3). The reason is that the

portfolio share is very sensitive to the expected excess return.

In Section 4.3 we discussed two reasons for the stronger sensitivity of the port-

folio share to expected excess returns in the frictionless case. First, the fraction

of investors that actively responds to a change in the expected excess return is 25

times higher when p = 1. Second, within the group of investors who choose a new

portfolio, the response to a change in the expected excess return is much smaller

when p = 0.04 because investors have a longer effective horizon and therefore re-

spond less to expected excess returns in the near future. From (47) the change in

z̃e,At is 1/D times the change in Etert+1. 1/D is 14 when p = 0.04 versus 3290 when

p = 1 (Case 1).32 The strong sensitivity of the portfolio to changes in expected

excess returns when p = 1 implies that a very small drop in the expected excess

return on Home equity is sufficient to absorb the exogenous shift toward Home

equity due to the financial shock. The overall portfolio ze,A therefore changes very

little.

It is however possible to generate a large asset price and portfolio response even

in the frictionless case, as is shown for p = 1, Case 2. As discussed, the financial

shocks in this case are 34 times as large as when p = 0.04. Even with portfolios

being very sensitive to the expected excess return, an extreme enough financial

shock will still require a substantial change in the relative asset price and expected

excess return, as shown in Figure 2, panel C, and Figure 3. Notably though, even

with the financial shock 34 times as high in the frictionless case, the relative asset

32Part of the reason that the response is so extreme when p = 1 is that the excess return is less

volatile (see Section 5.5), which is itself the result of the small effect of financial shocks on the

relative price. But even when we set the standard deviation of the excess return equal to that

of the p = 0.04 case, we would get 1/D = 1/[γvart(ert+1)] = 189, which is still over 13 times as

large as when p = 0.04.
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price still changes considerably less than with p = 0.04, and the expected excess

return is also smaller in size. The initial portfolio response is larger when p = 1

than p = 0.04, but much less persistent. When p = 0.04 the average portfolio

continues to rise for about 10 months before slowly going down.

5.5 Data versus Model Moments

Tables 3 and 4 report various model moments and compare them to data moments.

Table 3 reports regression coefficients of 1 month, 3 month, 12 month and 48 month

equity excess returns ert+1,t+i on the current relative log dividend yield dDt − qDt .

These are population moments, obtained from a simulation of the model over one

million months. The corresponding data moments in the first column are from

Table 1. These are not exactly comparable as the model has only two countries,

while the data moments are based on a panel regression of US minus foreign equity

returns for 73 foreign countries. But it is exactly the panel aspect that allows for

good empirical precision.

Table 4 reports model and data moments for excess returns and portfolio shares.

In the data these are based on 230 months from November 1995 to December 2014.

The model moments are based on 100,000 simulations of 230 months, showing both

the average moments and standard errors. The portfolio data used to compute the

data moments are obtained from US external equity assets and liabilities from

Bertaut and Tryon (2007) and Bertaut and Judson (2014), together with US and

ROW market capitalization data. The US equity portfolio share by respectively

US and ROW investors is computed as

zeHH,t =
zHH,t

zHH,t + zHF,t
=

US market cap− US ext liab
US market cap− US ext liab+ US ext assets

zeFH,t =
zFH,t

zFH,t + zFF,t
=

US ext liab

ROW market cap+ US ext liab− US ext assets

where US ext liab and US ext assets refer to US external equity liabilities and

assets. Average and relative portfolios are ze,At = 0.5(zeHH,t + zeFH,t) and ze,Dt =

zeHH,t− zeFH,t. We are mainly interested in ze,At , which depends on expected excess

returns. ze,Dt is a home bias variable that is mainly driven by exogenous changes

in τAt .33

33We only report the volatility of its monthly change as home bias trends upward in the data.
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Table 3 shows that there is significant excess return predictability by the relative

dividend yield when p = 0.04, which increases with the horizon as is the case in

the data. Overall the extent of predictability is comparable to that seen in the

data, a little higher at the 3 month horizon and lower at the 48 month horizon.

Not surprisingly, in Case 1 of the frictionless world there is virtually no excess

return predictability. This is consistent with Figure 3. The strong sensitivity

of portfolios to expected excess returns implies very small equilibrium expected

excess returns. There is naturally more excess return predictability in Case 2 of

the frictionless world where financial shocks are 34 times larger. But even with

such large financial shocks the excess return predictability is a factor 3 to 5 smaller

than when p = 0.04.

Table 4 shows various moments involving the volatility of excess returns and

portfolios, their autocorrelations, as well as contemporaneous correlations with

changes in relative dividends. When p = 0.04 all the moments are reasonably

close to those in the data. This is not the case in the two frictionless cases. This is

particularly evident in Case 1. The volatility of the excess return ert and portfolio

ze,At is much smaller than in the data. Moreover, both ert and ∆ze,At are almost

perfectly correlated with the change in relative dividends. We have seen that

financial shocks have little effect on asset prices and portfolios in that case, so that

they are mainly affected by dividend shocks.

Case 2 of the frictionless world matches the data better as financial shocks

matter due their extreme size. But even in this case the deviation from the data is

larger than with p = 0.04. The excess return ert is not sufficiently volatile, while

∆ze,At is more than twice as volatile as in the data and negatively autocorrelated

(opposite to the data).

6 Conclusion

We have introduced a Calvo type portfolio friction in a two-country DSGE model

for the global equity market. There is extensive micro evidence that investors make

infrequent portfolio decisions and recently Giglio et al. (2019) have shown that the

Calvo type infrequent trading friction is particularly relevant. In addition, BTW

have documented the importance of portfolio frictions for international portfolio

choice by focusing on mutual funds.
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A significant contribution of this paper was to develop and solve such a model.

Introducing an infrequent random portfolio decision making friction is more com-

plex than the more familiar Calvo price setting. Portfolio Euler equations are

complex and involve new control variables that capture the expected product of

excess returns and stochastic discount factors beyond the next period. Through

these variables, optimal portfolios depend not just on expected excess returns and

risk over the next period, but over the infinite future. The effective horizons of

investors is increased as they do not know when they will make a portfolio decision

again. Although there are a large number of state and control variables due to the

portfolio friction, we have been able to solve the model using a Taylor projection

method, combined with the modified Shepard’s inverse-weighting interpolation.

We have provided intuition by developing an approximated portfolio expression

using a methodology similar to Campbell and Viceira (1999). The approximation

shows that the optimal portfolio is the sum of three terms: a term that depends

on the present discounted value of expected excess returns, a term that depends

on exogenous portfolio shocks (financial shocks) and a hedge term that depends

on the present discounted value of risk associated with future asset returns. We

find numerically that the portfolio solution based on the global solution method is

very close to the sum of the first two terms of the approximated expression.

We have provided a numerical illustration by comparing the model with the

portfolio friction to two frictionless cases. The portfolio friction primarily affects

equilibrium asset prices, expected excess returns and portfolios through the im-

pact of financial shocks. The same size financial shock has a much smaller impact

on these variables in the frictionless world. The model with the calibrated friction

does a much better job in accounting for excess return predictability and other mo-

ments involving excess returns and portfolios. Under portfolio frictions, portfolios

respond much less to expected excess returns and more gradually, which improves

the empirical fit to the data.
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Appendix

A Foreign Country Equations

First, define:

mn,t−j
F,t+1 =

[
Rp,F,t−j
t+1

]−γ
e(1−γ)f

n
F,t+1

mo,t−j
F,t+1 =

[
Rp,F,t−j
t+1

]−γ
e(1−γ)f

o,t−j
F,t+1

where the portfolio return is defined as

Rp,F,t−j
t+1 = Rt + z̃FH,t−j(RH,t+1 −Rt) + z̃FF,t−j(RF,t+1 −Rt) (A.1)

Also define mt−j
F,t+1 = pmn,t−j

F,t+1 + (1− p)mo,t−j
F,t+1.

The Foreign country portfolio Euler equations are

Etm
t
F,t+1(RF,t+1 −Rt) + (1− p)Etmo,t

F,t+1R
p,F,t
t+1 λ

t
FF,t+1 = 0 (A.2)

Etm
t
F,t+1(e

−τF,tRH,t+1 −Rt) + (1− p)Etmo,t
F,t+1R

p,F,t
t+1 λ

t
FH,t+1 = 0 (A.3)

The Foreign country Bellman equations are

e(1−γ)f
n
F,t/β = αEtm

t
F,t+1R

p,F,t
t+1 (A.4)

e(1−γ)f
o,t−1
F,t /β = αEtm

t−1
F,t+1R

p,F,t−1
t+1 (A.5)

The Foreign country λ difference equations are

EtR
p,F,t−1
t+1

(
mt−1
F,t+1λ

t−1
FH,t − θm

o,t−1
F,t+1λ

t−1
FH,t+1

)
= βEtm

t−1
F,t+1(e

−τF,t−1RH,t+1 −Rt)(A.6)

EtR
p,F,t−1
t+1

(
mt−1
F,t+1λ

t−1
FF,t − θm

o,t−1
F,t+1λ

t−1
FF,t+1

)
= βEtm

t−1
F,t+1(RF,t+1 −Rt) (A.7)

B Further Details on Solution Method

B.1 State Variables at t+ 1

(37) writes the evolution of the state variables as svt+1 = G(svt, cvt, εt+1). To see

this, first consider the last 6 state variables at t + 1: svH,t+1 = (τHt, z̃HH,t, z̃HF,t)
′

and svF,t+1 = (τFt, z̃FH,t, z̃FF,t)
′. Clearly, these are elements of svt (the tax rates)

and cvt (the portfolio shares). Next consider the first 9 state variables: St+1 =

30



(dH,t+1, dF,t+1, τH,t+1, τF,t+1, w
D
t+1, w

D
t , z

A
Ht, z

D
Ht, z

D
Ft)
′. The Home and Foreign divi-

dends and tax rates at t + 1 depend on the Home and Foreign tax rates at time

t (part of svt) and the shocks εt+1. Skip over wDt+1 for a moment. wDt is part

of svt. zAHt, z
D
Ht and zDFt depend on ωt, zHH,t, zHF,t, zFH,t and zFF,t. ωt depends

on wDt , which is part of svt. We can write zHH,t = (1 − p)zHH,t−1 + pz̃HH,t =

(1 − p)zAH,t−1 + (1 − p)(1 − ωt−1)zDH,t−1 + pz̃HH,t, where ωt−1 depends on wDt−1. So

zHH,t can be written as a function of state variables at time t and control variables

at time t. The same is the case for the other portfolio shares.

Some more discussion is warranted regarding wDt+1. Denote all state variables

at t+1 other than wDt+1 as s̃vt+1. It follows from the discussion above that s̃vt+1 =

Gs(svt, cvt, εt+1) for a known function Gs. From (33), and the return expressions

(1) and (2), as well as the discussion above, it follows that we can write wDt+1 =

Gw(svt, cvt, εt+1, qH,t+1, qF,t+1) for a known function Gw. At this point we substitute

the linear projection (35) at a particular node svi, applied to t + 1: cvt+1 =

cvi + M i(svt+1 − svi). For a given cvi and M i (first and second row), this gives

qH,t+1 and qF,t+1 as linear functions of svt+1, which in turn implies a linear function

in s̃vt+1 and wDt+1. Write these as qi,t+1 = Gi(s̃vt+1, w
D
t+1). Then we have

wDt+1 = Gw(svt, cvt, εt+1, GH(Gs(svt, cvt, εt+1), w
D
t+1), GF (Gs(svt, cvt, εt+1), w

D
t+1))

(B.8)

We linearize the right hand side around wDt+1 = wDt , where wDt is the fifth element

of the node svi, to solve for wDt+1 as a function of svt, cvt and εt+1.

B.2 Other Details

We start the solution of the 168 parameters either at the deterministic steady

state or at the nearest node in the state space for which we have solved the local

solution. We go in steps of 0.001 times the distance towards the new node in

the state space, each time resolving the parameters, until we have reach the new

node. We normalize the variables fnH,t+1, f
o,t
H,t+1, f

n
F,t+1, f

o,t
F,t+1 by f o,t−1Ht and f o,t−1Ft

to avoid overflows, given the large steady state values of the f variables. We use

a dampened quasi-Newton method to solve the parameters before switching to

hybrid-Powell once the largest absolute value of the elements of H(svt) is less than

10−4. All codes are written in Fortran95 and compiled with the Intel Compiler,

except for Ward’s clustering algorithm, which is written in Matlab. All codes are

available on request. No proprietary software is needed.
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C Last Hedge Term

The last hedge term in (46) is less intuitive. Here we attempt a brief intuition.

This term is multiplied by (1 − 2z̄)2 and therefore only applies when the mean z̄

of the fraction invested domestically differs from 0.5. Assume that z̄ is well above

0.5. The average share invested in Home equity is then affected mostly by z̃HF and

z̃FH (as opposed to domestic portfolio shares). It also means that a particularly

bad state for Home (Foreign) investors is a low Home (Foreign) equity return.

The average Home equity share is larger when the covariance in the last line of

(46) is positive. This means that in a bad state for the Home (Foreign) country,

world equity returns tend to be low (high) relative to bond interest rates. To

hedge against such bad states, it is attractive for Home agents to lower z̃HF and

for Foreign agents to raise z̃FH . Both raise the average Home equity share.

D Ergodic Distribution Relative Wealth

We compute the ergodic distribution of relative wealth by simulating the model

over one million months. This is done for the parameterization in Table 2. The

result is shown in Figure A1. Ninety five percent of the distribution is between plus

and minus 0.52. The logic behind the stationarity of relative wealth is as follows.

Assume that a shock leads to an increase in the relative wealth of the Home country.

As a result of home bias (which is matched in the parameterization), this leads to

an increase in the relative demand for Home equity. This raises the relative Home

equity price and therefore lowers the expected return on Home equity relative to

Foreign equity. This lowers the expected portfolio return of Home agents relative

to Foreign agents, which in turn reduces the relative wealth of the Home country.
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Table 1 Predictability International Equity Return Differentials

1 month 3 months 12 months 48 months

Earning-Price 0.00660*** 0.0185*** 0.0779*** 0.0490***
(0.00197) (0.00383) (0.00895) (0.00444)

Constant -0.00177 -0.00366 -0.00849 -0.0283
(0.00149) (0.00294) (0.00765) (0.0315)

Observations 22033 21889 21241 18643
R2 0.006 0.015 0.044 0.128

N otes: Standard errors in parenthesis. *p < 0.10, **p < 0.05, ***p < 0.01. Results are

based on panel regressions of equity returns in 73 countries minus the equity return in the

US on the log relative earnings-price ratio over the period 1970:01-2019:02. All regressions

include country fixed effects and standard errors are clstered at the monthly level.

Table 2 Calibrated Parameters

Parameter Description

p = 0.04 frequency of portfolio adjustment

γ = 10 rate of relative risk-aversion

β = 0.99668 time discount rate

ρd = 0.9767 autoregressive coefficient dividend process

σ
εdD

= 0.0447 standard deviation relative dividend innovation εdHt − εdFt

σ
εdA

= 0.0325 standard deviation average dividend innovation 0.5(εdHt + εdFt)

ρτ = 0.95 autoregressive coefficient financial shock process

τ = 0.0002 average tax on foreign returns

σ
ετD

= 0.0015 standard deviation relative financial shock ετHt − ετF t

σ
ετA

= 0.00005 standard deviation average financial shock 0.5(ετHt + ετF t)

1



Table 3 Predictability International Equity Return Differentials

HORIZON DATA MODEL

p = 0.04 p = 1 p = 1
Case 1 Case 2

1 month 0.0066 0.0101 0.00002 0.0033

3 months 0.0185 0.0385 0.00005 0.0086

12 months 0.0779 0.1076 0.00011 0.0255

48 months 0.490 0.2127 0.00036 0.0490

N otes: The data moments correspond to Table 1, representing the coefficients of a panel

regression of international equity return differentials (foreign countries minus US) on the

log relative earnings-price ratio. Model moments represent the model population moments

when regressing the Home minus Foreign equity return on the Home minus Foreign log

dividend yield. They are based on one simulation of the model over one million months.

Results are shown for excess returns over 1, 3, 12 and 48 months.

2



Table 4 Data and Model Moments with Gradual Portfolio Adjustment

DATA MODEL

p = 0.04 p = 1 p = 1
Case 1 Case 2

STANDARD DEVIATIONS

erH,t 0.045 0.034 0.033 0.033
(0.0017) (0.0015) (0.0016)

ert 0.027 0.023 0.0055 0.016
(0.0012) (0.0003) (0.0011)

ze,At 0.026 0.028 0.0039 0.029
(0.0082) (0.0011) (0.0068)

∆ze,At 0.0045 0.0046 0.0010 0.0110
(0.0003) (0.0001) (0.0012)

∆ze,Dt 0.0044 0.0029 0.0023 0.0701
(0.0004) (0.0003) (0.0134)

AUTOCORRELATIONS

erH,t 0.135 0.017 -0.005 -0.008
(0.067) (0.066) (0.067)

ert 0.086 0.212 0.003 -0.062
(0.064) (0.066) (0.070)

ze,At 0.976 0.982 0.958 0.922
(0.012) (0.024) (0.030)

∆ze,At 0.155 0.270 -0.013 -0.053
(0.069) (0.066) (0.073)

CONTEMPORANEOUS CORRELATIONS

corr(∆dDt , ert) 0.177 0.193 0.995 0.364
(0.064) (0.002) (0.067)

corr(∆dDt ,∆z
e,A
t ) 0.249 0.171 0.997 0.121

(0.064) (0.001) (0.070)

corr(∆ze,At , ert) 0.922 0.967 0.989 0.844
(0.014) (0.005) (0.054)

corr(erH,t, erF,t) 0.84 0.772 0.986 0.882
(0.028) (0.002) (0.018)

Notes: Model moments and associated standard errors (in parentheses) are based on 100,000 simu-

lations of a 230 month period. Results are shown for three model parameterizations. The p = 0.04

parameterization is shown in Table 2. The p = 1, Case 1, parameterization sets τ = 0.000083 and

sets σ
ετ
D = 6.47 ∗ (10−6) and σ

ετ
A = 2.16 ∗ (10−7). The p = 1, Case 2, parameterization is the

same as Table 2, except that τ is set at 0.0013.
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Figure 3 Expected Excess Returns—Financial Shocks
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This Appendix derives approximated portfolio expressions using an approach similar

to Campbell and Viceira (1999). The Appendix focuses on the Home country. The

derivations for the Foreign country are analogous and shown after the derivation for the

Home country. The aim is to obtain approximated expressions for z̃HH,t and z̃HF,t. While

at times we linearize some expressions, we never linearize around these two portfolio

variables. They are treated as parameters that need to be solved. We ultimately derive

an expression for z̃e,At .

1 Home Equations

We start from the portfolio Euler equations in the text of the paper. Substituting the

stochastic discount factors, we have

Et
[
Rp,H,t
t+1

]−γ (
(1 − p)e(1−γ)f

o,t
H,t+1 + pe(1−γ)f

n
H,t+1

)
(RH,t+1 −Rt)

+(1 − p)Et
[
Rp,H,t
t+1

]1−γ
e(1−γ)f

o,t
H,t+1λtHH,t+1 = 0 (1)

Et
[
Rp,H,t
t+1

]−γ (
(1 − p)e(1−γ)f

o,t
H,t+1 + pe(1−γ)f

n
H,t+1

)
(e−τHtRF,t+1 −Rt)

+(1 − p)Et
[
Rp,H,t
t+1

]1−γ
e(1−γ)f

o,t
H,t+1λtHF,t+1 = 0 (2)

where

gHtλ
t−1
HH,t = θEte

(1−γ)fo,t−1
H,t+1

(
Rp,H,t−1
t+1

)1−γ
λt−1HH,t+1 + (3)

βEt

(
pe(1−γ)f

n
H,t+1 + (1 − p)e(1−γ)f

o,t−1
H,t+1

) (
Rp,H,t−1
t+1

)−γ
(RH,t+1 −Rt)

gHtλ
t−1
HF,t = θEte

(1−γ)fo,t−1
H,t+1

(
Rp,H,t−1
t+1

)1−γ
λt−1HF,t+1 + (4)

βEt

(
pe(1−γ)f

n
H,t+1 + (1 − p)e(1−γ)f

o,t−1
H,t+1

) (
Rp,H,t−1
t+1

)−γ
(RF,t+1e

−τH,t−1 −Rt)

with

gHt = Et

(
pe(1−γ)f

n
H,t+1 + (1 − p)e(1−γ)f

o,t−1
H,t+1

) (
Rp,H,t−1
t+1

)1−γ
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Using the Bellman equation for f o,t−1Ht , we can also write

gHt = (1/α)e(1−γ)f
o,t−1
Ht /β

Finally, the Bellman equations are

e(1−γ)f
n
Ht/β = Et

(
pe(1−γ)f

n
H,t+1 + (1 − p)e(1−γ)f

o,t
H,t+1

) (
Rp,H,t
t+1

)1−γ
(5)

e(1−γ)f
o,t−1
Ht /β = αEt

(
pe(1−γ)f

n
H,t+1 + (1 − p)e(1−γ)f

o,t−1
H,t+1

) (
Rp,H,t−1
t+1

)1−γ
(6)

We will first transform some of these variables. In the deterministic steady state of

the model all gross asset returns are 1/β and the Bellman variables fnHt and f o,t−1Ht are

equal to ln(1−β). From hereon we will denote all asset returns in logs with a lower case

r and substract ln(1/β). The resulting log returns in deviation from their deterministic

steady states are denoted with a hat: r̂. Analogously, after substracting ln(1 − β) from

the Bellman variables we also denote them with a hat, e.g. f̂nHt and f̂ o,t−1Ht . Finally, λt−1HH,t

and λt−1HF,t are redefined as their previous values times

(1 − p)e(1−γ)f̂
o,t−1
Ht e(1−γ)r̂

p,H,t−1
t

The Home portfolio Euler equation for Home equity is then

(1 − p)Ete
−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂H,t+1 − (1 − p)Ete

−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂t +

pEte
−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂H,t+1 − pEte

−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂t + Etλ
t
HH,t+1 = 0 (7)

The Home portfolio Euler equation for Foreign equity is

(1 − p)Ete
−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂F,t+1−τHt − (1 − p)Ete

−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂t +

pEte
−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂F,t+1−τHt − pEte

−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂t + Etλ
t
HF,t+1 = 0 (8)

The new difference equations for λt−1HH,t and λt−1HF,t are

λt−1HH,t = θEte
(1−γ)β−1

β
f̂o,t−1
Ht e(1−γ)r̂

p,H,t−1
t λt−1HH,t+1 + (9)

θe(1−γ)
β−1
β
f̂o,t−1
Ht Et

(
(1 − p)e(1−γ)f̂

o,t−1
H,t+1 + pe(1−γ)f̂

n
H,t+1

)
e(1−γ)r̂

p,H,t−1
t −γr̂p,H,t−1

t+1 (er̂H,t+1 − er̂t)

λt−1HF,t = θEte
(1−γ)β−1

β
f̂o,t−1
Ht e(1−γ)r̂

p,H,t−1
t λt−1HF,t+1 + (10)

e(1−γ)
β−1
β
f̂o,t−1
Ht θEt

(
(1 − p)e(1−γ)f̂

o,t−1
H,t+1 + pe(1−γ)f̂

n
H,t+1

)
e(1−γ)r̂

p,H,t−1
t −γr̂p,H,t−1

t+1 (er̂F,t+1−τH,t−1 − er̂t)

The Bellman equations are

e(1−γ)f̂
n
Ht/β = Ete

(1−γ)r̂p,H,tt+1

(
pe(1−γ)f̂

n
H,t+1 + (1 − p)e(1−γ)f̂

o,t
H,t+1

)
(11)

e(1−γ)f̂
o,t−1
Ht /β = Ete

(1−γ)r̂p,H,t−1
t+1

(
pe(1−γ)f̂

n
H,t+1 + (1 − p)e(1−γ)f̂

o,t−1
H,t+1

)
(12)
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2 Solving the Bellman equations

In what follows we will need expressions for fnH,t+s and f o,tH,t+s for s ≥ 1. In analogy to

(11)-(12), we have

e(1−γ)f̂
n
H,t+s/β = Et+se

(1−γ)r̂p,H,t+st+s+1

(
pe(1−γ)f̂

n
H,t+s+1 + (1 − p)e(1−γ)f̂

o,t+s
H,t+s+1

)
(13)

e(1−γ)f̂
o,t+j
H,t+s/β = Et+se

(1−γ)r̂p,H,t+jt+s+1

(
pe(1−γ)f̂

n
H,t+s+1 + (1 − p)e(1−γ)f̂

o,t+j
H,t+s+1

)
(14)

Linearizing around zero values of these variables, we have

f̂nH,t+s = βEt+s
(
r̂p,H,t+st+s+1 + pf̂nH,t+s+1 + (1 − p)f̂ o,t+sH,t+s+1

)
(15)

f̂ o,t+jH,t+s = βEt+s
(
r̂p,H,t+jt+s+1 + pf̂nH,t+s+1 + (1 − p)f̂ o,t+jH,t+s+1

)
(16)

where the portfolio returns are

er̂
p,H,t+j
t+s+1 = er̂t+s + z̃HH,t+j

(
er̂H,t+s+1 − er̂t+s

)
+ z̃HF,t+j

(
er̂F,t+s+1 − er̂t+s

)
In differentiating the log portfolio returns, we differentiate around values of the portfolio

shares invested in Home and Foreign equity equal to their ergodic means, which are

denoted z̄HH and z̄HF . The only exception are the portfolio shares at time t, z̃HH,t and

z̃HF,t. These are the ones that we are trying to solve. We treat them as parameters that

we do not linearize around. This means that for j ≥ 1 the linearized portfolio returns

are

r̂p,H,t+jt+s+1 = r̂t+s + z̄HHerH,t+s+1 + z̄HF erF,t+s+1 (17)

Here erH,t+s+1 = rH,t+s+1 − rt+s and erF,t+s+1 = rF,t+s+1 − rt+s. For j = 0 we have

r̂p,H,tt+s+1 = r̂t+s + z̃HH,terH,t+s+1 + z̃HF,terF,t+s+1 (18)

It then follows from (15)-(16) that for j ≥ 1 and s ≥ 1

f̂nH,t+s = f̂ o,t+jH,t+s = Et+s
∞∑
i=1

βir̄p,Ht+s+i (19)

where

r̄p,Ht+s+i = r̂t+s+i−1 + z̄HHerH,t+s+i + z̄HF erF,t+s+i (20)

We also have

f̂ o,tH,t+s = βEt+s
(
r̂t+s + z̃HH,terH,t+s+1 + z̃HF,terF,t+s+1 + pf̂nH,t+s+1 + (1 − p)f̂ o,tH,t+s+1

)
(21)
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Substracting

f̂nH,t+s = βEt+s
(
r̂p,H,t+st+s+1 + f̂nH,t+s+1

)
(22)

we have

f̂ o,tH,t+s − f̂nH,t+s = β(z̃HH,t − z̄HH)Et+serH,t+s+1 + β(z̃HF,t − z̄HF )Et+serF,t+s+1 +

θEt
(
f̂ o,tH,t+s+1 − f̂nH,t+s+1

)
(23)

Integrating, we have

f̂ o,tH,t+s = f̂nH,t+s+(z̃HH,t−z̄HH)β
∞∑
i=1

θi−1Et+serH,t+s+i+(z̃HF,t−z̄HF )β
∞∑
i=1

θi−1Et+serF,t+s+i

(24)

3 Solving Expected Lambdas

The solution to (9)-(10) is

λt−1HH,t = Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,t−1
H,t,t+i−1

(
(1 − p)e(1−γ)f̂

o,t−1
H,t+i + pe(1−γ)f̂

n
H,t+i

)
e(1−γ)r̂

p,H,t−1
t,t+i−1 e−γr̂

p,H,t−1
t+i (er̂H,t+i − er̂t+i−1)

λt−1HF,t = Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,t−1
H,t,t+i−1

(
(1 − p)e(1−γ)f̂

o,t−1
H,t+i + pe(1−γ)f̂

n
H,t+i

)
e(1−γ)r̂

p,H,t−1
t,t+i−1 e−γr̂

p,H,t−1
t+i (er̂F,t+i−τH,t−1 − er̂t+i−1)

where

f̂ o,t−1H,t,t+i−1 = f̂ o,t−1Ht + ...+ f̂ o,t−1H,t+i−1 (25)

r̂p,H,t−1t,t+i−1 = r̂p,H,t−1t + ...+ r̂p,H,t−1t+i−1 (26)

It follows that

Etλ
t
HH,t+1 = (27)

(1 − p)Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂o,tH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂H,t+i+1

−(1 − p)Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂o,tH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂t+i

pEt
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂nH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂H,t+i+1

−pEt
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂nH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂t+i
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and

Etλ
t
HF,t+1 = (28)

(1 − p)Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂o,tH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂F,t+i+1−τHt

−(1 − p)Et
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂o,tH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂t+i

pEt
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂nH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂F,t+i+1−τHt

−pEt
∞∑
i=1

θie(1−γ)
β−1
β
f̂o,tH,t+1,t+i+(1−γ)f̂nH,t+i+1+(1−γ)r̂p,H,tt+1,t+i−γr̂

p,H,t
t+i+1+r̂t+i

In approximating, write the expectations of exponents as Eex = eE(x)+0.5var(x) and

then approximate this as 1 + E(x) + 0.5var(x). Applying this to the expression for

Etλ
t
HH,t+1 gives

Etλ
t
HH,t+1 =

∞∑
i=1

θiEterH,t+i+1 + 0.5
∞∑
i=1

θi (vart(rH,t+i+1) − vart(rt+i)) +

∞∑
i=1

θicovt(erH,t+i+1, (1 − γ)
β − 1

β
f o,tH,t+1,t+i + (1 − γ)rp,H,tt+1,t+i − γrp,H,tt+i+1) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, (1 − p)f o,tH,t+i+1 + pfnH,t+i+1) (29)

Hats are now removed from variables as they just subtract a constant and therefore do

not affect variances and covariances.

Now use the linearized portfolio expressions:

rp,H,tt+i+1 = rt+i + z̃HH,terH,t+i+1 + z̃HF,terF,t+i+1 (30)

rp,H,tt+1,t+i = rp,H,tt+1 + ...+ rp,H,tt+i = rt,t+i−1 + z̃HH,terH,t+1,t+i + z̃HF,terF,t+1,t+i

where

rt,t+i−1 = rt + ...+ rt+i−1 (31)

erH,t+1,t+i = erH,t+1 + ...+ erH,t+i (32)

We then have

Etλ
t
HH,t+1 =

∞∑
i=1

θiEterH,t+i+1 + 0.5
∞∑
i=1

θi (vart(rH,t+i+1) − vart(rt+i)) +
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(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1,
β − 1

β
f o,tH,t+1,t+i) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, rt,t+i−1) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erH,t+1,t+i)z̃HH,t +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erF,t+1,t+i)z̃HF,t −

γ
∞∑
i=1

θicovt(erH,t+i+1, rt+i) −

γ
∞∑
i=1

θicovt(erH,t+i+1, erH,t+i+1)z̃HH,t −

γ
∞∑
i=1

θicovt(erH,t+i+1, erF,t+i+1)z̃HF,t +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, (1 − p)f o,tH,t+i+1 + pfnH,t+i+1) (33)

Substituting (24) in the last line, we have

Etλ
t
HH,t+1 =

∞∑
i=1

θiEterH,t+i+1 + 0.5
∞∑
i=1

θi (vart(rH,t+i+1) − vart(rt+i)) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1,
β − 1

β
f o,tH,t+1,t+i) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, rt,t+i−1) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erH,t+1,t+i)z̃HH,t +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erF,t+1,t+i)z̃HF,t −

γ
∞∑
i=1

θicovt(erH,t+i+1, rt+i) −

γ
∞∑
i=1

θicovt(erH,t+i+1, erH,t+i+1)z̃HH,t −

γ
∞∑
i=1

θicovt(erH,t+i+1, erF,t+i+1)z̃HF,t +
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(1 − γ)
∞∑
i=1

∞∑
j=1

θi+jcovt(erH,t+i+1, erH,t+i+1+j)(z̃HH,t − z̄HH) +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+jcovt(erH,t+i+1, erF,t+i+1+j)(z̃HF,t − z̄HF ) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, f
n
H,t+i+1) (34)

Analogously

Etλ
t
HF,t+1 =

∞∑
i=1

θiEterF,t+i+1 −
θ

1 − θ
τHt + 0.5

∞∑
i=1

θi (vart(rF,t+i+1) − vart(rt+i)) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1,
β − 1

β
f o,tH,t+1,t+i) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, rt,t+i−1) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, erH,t+1,t+i)z̃HH,t +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, erF,t+1,t+i)z̃HF,t −

γ
∞∑
i=1

θicovt(erF,t+i+1, rt+i) −

γ
∞∑
i=1

θicovt(erF,t+i+1, erH,t+i+1)z̃HH,t −

γ
∞∑
i=1

θicovt(erF,t+i+1, erF,t+i+1)z̃HF,t +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+jcovt(erF,t+i+1, erH,t+i+1+j)(z̃HH,t − z̄HH) +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+jcovt(erF,t+i+1, erF,t+i+1+j)(z̃HF,t − z̄HF ) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, f
n
H,t+i+1) (35)
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4 Solving Portfolio Shares from Portfolio Eulers

Now go back to the portfolio Euler equations. The Home equity Euler equation (7) can

be written as

(1 − p)Ete
−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂H,t+1 −

(1 − p)Ete
−γr̂p,H,tt+1 +(1−γ)f̂o,tH,t+1+r̂t +

pEte
−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂H,t+1 −

pEte
−γr̂p,H,tt+1 +(1−γ)f̂nH,t+1+r̂t +

Etλ
t
HH,t+1 = 0 (36)

Using Eex = eE(x)+0.5var(x), and again approximating this as 1 + E(x) + 0.5var(x), we

have

EterH,t+1 + 0.5vart(rH,t+1) − γvart(erH,t+1)z̃HH,t − γcovt(erH,t+1, erF,t+1)z̃HF,t +

(1 − γ)covt(erH,t+1, (1 − p)f o,tH,t+1 + pfnH,t+1) + Etλ
t
HH,t+1 = 0 (37)

This uses that r̂p,H,tt+1 = r̂t+ z̃HH,terH,t+1 + z̃HF,terF,t+1. Substituting (24) with s = 1, this

becomes

EterH,t+1 + 0.5vart(rH,t+1) − γvart(erH,t+1)z̃HH,t − γcovt(erH,t+1, erF,t+1)z̃HF,t +

(1 − γ)
∞∑
j=1

θjcovt(erH,t+1, erH,t+1+j)(z̃HH,t − z̄HH) +

(1 − γ)
∞∑
j=1

θjcovt(erH,t+1, erF,t+1+j)(z̃HF,t − z̄HF ) +

(1 − γ)covt(erH,t+1, f
n
H,t+1) + Etλ

t
HH,t+1 = 0 (38)

Substituting the expression for Etλ
t
HH,t+1, we have

∞∑
i=1

θi−1EterH,t+i + 0.5
∞∑
i=1

θi−1 (vart(rH,t+i) − vart(rt+i−1)) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1,
β − 1

β
f o,tH,t+1,t+i) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, rt,t+i−1) +

(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erH,t+1,t+i)z̃HH,t +
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(1 − γ)
∞∑
i=1

θicovt(erH,t+i+1, erF,t+1,t+i)z̃HF,t −

γ
∞∑
i=1

θicovt(erH,t+i+1, rt+i) −

γ
∞∑
i=1

θi−1vart(erH,t+i)z̃HH,t −

γ
∞∑
i=1

θi−1covt(erH,t+i, erF,t+i)z̃HF,t +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+j−1covt(erH,t+i, erH,t+i+j)(z̃HH,t − z̄HH) +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+j−1covt(erH,t+i, erF,t+i+j)(z̃HF,t − z̄HF ) +

(1 − γ)
∞∑
i=1

θi−1covt(erH,t+i, f
n
H,t+i) = 0 (39)

Analogously, the first-order condition for Foreign equity becomes

∞∑
i=1

θi−1EterF,t+i −
1

1 − θ
τHt + 0.5

∞∑
i=1

θi−1 (vart(rF,t+i) − vart(rt+i−1)) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1,
β − 1

β
f o,tH,t+1,t+i) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, rt,t+i−1) +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, erH,t+1,t+i)z̃HH,t +

(1 − γ)
∞∑
i=1

θicovt(erF,t+i+1, erF,t+1,t+i)z̃HF,t −

γ
∞∑
i=1

θicovt(erF,t+i+1, rt+i) −

γ
∞∑
i=1

θi−1covt(erF,t+i, erH,t+i)z̃HH,t −

γ
∞∑
i=1

θi−1vart(erF,t+i)z̃HF,t +

(1 − γ)
∞∑
i=1

∞∑
j=1

θi+j−1covt(erF,t+i, erH,t+i+j)(z̃HH,t − z̄HH) +
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(1 − γ)
∞∑
i=1

∞∑
j=1

θi+j−1covt(erF,t+i, erF,t+i+j)(z̃HF,t − z̄HF ) +

(1 − γ)
∞∑
i=1

θi−1covt(erF,t+i, f
n
H,t+i) = 0 (40)

Define the matrix Dt as

Dt =
∞∑
i=1

θi−1Σi,t (41)

where Σi,t is a symmetric matrix with

Σi,t(1, 1) = γvart(erH,t+i) + 2(γ − 1)covt(erH,t+i, erH,t+1,t+i−1)

Σi,t(2, 2) = γvart(erF,t+i) + 2(γ − 1)covt(erF,t+i, erF,t+1,t+i−1)

Σi,t(1, 2) = γcovt(erH,t+i, erF,t+i) + (γ − 1)covt(erH,t+i, erF,t+1,t+i−1) + (γ − 1)covt(erF,t+i, erH,t+1,t+i−1)

Note that when i = 1 the terms multiplying (γ − 1) are zero as erH,t+1,t is not defined

or zero.

Also define the matrix Pt as

Pt = (γ − 1)
∞∑
i=1

θi−1Ωi,t (42)

where

Ωi,t(1, 1) = covt(erH,t+i, erH,t+1,t+i−1)

Ωi,t(2, 2) = covt(erF,t+i, erF,t+1,t+i−1)

Ωi,t(1, 2) = covt(erF,t+i, erH,t+1,t+i−1)

Ωi,t(2, 1) = covt(erH,t+i, erF,t+1,t+i−1)

In a symmetric state this is a symmetric matrix, but in an asymmetric state the matrix

will generally be asymmetric. The portfolio solution is then

Dt

 z̃HH,t

z̃HF,t

 =

 ∑∞
i=1 θ

i−1EterH,t+i∑∞
i=1 θ

i−1EterF,t+i

+ hHt (43)

where

hHt = Pt

 z̄HH

z̄HF

−

 0
1

1−θ

 τHt + 0.5

 ∑∞
i=1 θ

i−1 (vart(rH,t+i) − vart(rt+i−1))∑∞
i=1 θ

i−1 (vart(rF,t+i) − vart(rt+i−1))

+
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 ∑∞
i=1 θ

icovt(erH,t+i+1, (1 − γ)rt,t+i−1 − γrt+i)∑∞
i=1 θ

icovt(erF,t+i+1, (1 − γ)rt,t+i−1 − γrt+1)

+

(1 − γ)

 ∑∞
i=1 θ

i−1covt(erH,t+i, f
n
H,t+i)∑∞

i=1 θ
i−1covt(erF,t+i, f

n
H,t+i)

 (44)

Note that there is one additional term in hHt, involving the covariance between [(1 −
β)/β]f o,tH,t+1,t+i and either erH,t+i+1 or erF,t+i+1. This term will be omitted as it is negli-

gible in size since β is close to 1.

Now consider the left hand side of the portfolio expression. Expand this around the

erogodic mean of the matrix Dt and the portfolio shares. It then becomes (with a bar

referring to the ergodic mean)

Dt

 z̄HH

z̄HF

+ D̄

 z̃HH,t − z̄HH

z̃HF,t − z̄HF

 (45)

Now substract the ergodic mean from both sides of the portfolio expression and refer to

deviations from the ergodic mean with a hat. This gives z̃HH,t

z̃HF,t

 =

 z̄HH

z̄HF

+ D̄−1

 ∑∞
i=1 θ

i−1EtêrH,t+i∑∞
i=1 θ

i−1EtêrF,t+i

+ D̄−1ĥHt (46)

where

ĥHt = (P̂t − D̂t)

 z̄HH

z̄HF

−

 0
1

1−θ

 (τHt − τ)

+0.5

 ∑∞
i=1 θ

i−1 ( ˆvart(rH,t+i) − ˆvart(rt+i−1))∑∞
i=1 θ

i−1 ( ˆvart(rF,t+i) − ˆvart(rt+i−1))

+

 ∑∞
i=1 θ

i ˆcovt(erH,t+i+1, (1 − γ)rt,t+i−1 − γrt+i)∑∞
i=1 θ

i ˆcovt(erF,t+i+1, (1 − γ)rt,t+i−1 − γrt+1)

+

(1 − γ)

 ∑∞
i=1 θ

i−1 ˆcovt(erH,t+i, f
n
H,t+i)∑∞

i=1 θ
i−1 ˆcovt(erF,t+i, f

n
H,t+i)

 (47)

The optimal portfolio for the Foreign country is analogous: z̃FH,t

z̃FF,t

 =

 z̄FH

z̄FF

+ D̄−1

 ∑∞
i=1 θ

i−1EtêrH,t+i∑∞
i=1 θ

i−1EtêrF,t+i

+ D̄−1ĥFt (48)
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where

ĥFt = (P̂t − D̂t)

 z̄FH

z̄FF

−

 1
1−θ
0

 (τFt − τ)

+0.5

 ∑∞
i=1 θ

i−1 ( ˆvart(rH,t+i) − ˆvart(rt+i−1))∑∞
i=1 θ

i−1 ( ˆvart(rF,t+i) − ˆvart(rt+i−1))

+

 ∑∞
i=1 θ

i ˆcovt(erH,t+i+1, (1 − γ)rt,t+i−1 − γrt+i)∑∞
i=1 θ

i ˆcovt(erF,t+i+1, (1 − γ)rt,t+i−1 − γrt+1)

+

(1 − γ)

 ∑∞
i=1 θ

i−1 ˆcovt(erH,t+i, f
n
F,t+i)∑∞

i=1 θ
i−1 ˆcovt(erF,t+i, f

n
F,t+i)

 (49)

5 Average Equity Portfolio Share

Now consider the equity portfolio shares. We have

z̃eHH,t =
z̃HH,t

z̃HH,t + z̃HF,t
(50)

z̃eFH,t =
z̃FH,t

z̃FH,t + z̃FF,t
(51)

Linearizing gives

z̃eHH,t = z̄ + (1 − z̄)z̃HH,t − z̄z̃HF,t (52)

z̃eFH,t = 1 − z̄ + z̄z̃FH,t − (1 − z̄)z̃FF,t (53)

Define

z̃e,At = 0.5(z̃eHH,t + z̃eFH,t) (54)

z̃e,Dt = z̃eHH,t − z̃eFH,t (55)

We have

z̃e,At = 0.5 + 0.5 ((1 − z̄)z̃HH,t − z̄z̃HF,t + z̄z̃FH,t − (1 − z̄)z̃FF,t) (56)

Define Â(i, j) = D̂(i, j) − P̂ (i, j). Then using the results from the previous section we

have

z̃e,At = 0.5 +
0.5

D1 −D2

∞∑
i=1

θi−1Etert+i +
0.5

1 − θ

µ

D1 −D2

τDt
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− z̄(1 − z̄)

D1 +D2

(
Â(1, 1) − Â(1, 2) + Â(2, 1) − Â(2, 2)

)
− 0.5

D2
1 −D2

2

(
D1(Â(1, 2) − Â(2, 1)) +D2(Â(1, 1) − Â(2, 2))

)
+

0.25

D1 −D2

∞∑
i=1

θi−1( ˆvart(rH,t+i) − ˆvart(rF,t+i)) (57)

+
0.5

D1 −D2

∞∑
i=1

θi ˆcovt(ert+i+1, (1 − γ)rt,t+i−1 − γrt+i)

+
0.5(1 − γ)

D1 −D2

∞∑
i=1

θi−1
(

ˆcov(erH,t+i, (1 − µ)fnH,t+i + µfnF,t+i) − ˆcov(erF,t+i, µf
n
H,t+i + (1 − µ)fnF,t+i)

)
where

µ =
z̄D1 + (1 − z̄)D2

D1 +D2

and ert+i = rH,t+i − rF,t+i = erH,t+i − erF,t+i.

We have

Â(1, 1) =
∞∑
i=1

θi−1 (γ ˆvart(erH,t+i) + (γ − 1) ˆcovt(erH,t+i, erH,t+1,t+i−1))

Â(2, 2) =
∞∑
i=1

θi−1 (γ ˆvart(erF,t+i) + (γ − 1) ˆcovt(erF,t+i, erF,t+1,t+i−1))

Â(2, 1) − Â(1, 2) = (γ − 1)
∞∑
i=1

θi−1 ( ˆcovt(erF,t+i, erH,t+1,t+i−1) − ˆcovt(erH,t+i, erF,t+1,t+i−1))

Collecting the Â terms in the expression for z̃e,At and using D1 = 0.5(D1+D2)+0.5(D1−
D2) and D2 = 0.5(D1 +D2) − 0.5(D1 −D2), we can write the sum of these terms as

− 0.25

D1 −D2

(
Â(1, 2) − Â(2, 1)) + Â(1, 1) − Â(2, 2)

)
+

0.25(1 − 2z̄)2

D1 +D2

(
Â(1, 1) − Â(1, 2)) + Â(2, 1) − Â(2, 2)

)
(58)

Using the expressions above for the Â terms, this becomes

− 0.25

D1 −D2

∞∑
i=1

θi−1 (γ( ˆvar(erH,t+i) − ˆvar(erF,t+i)) + (γ − 1) ˆcov(ert+i, erH,t+1,t+i−1 + erF,t+1,t+i−1))

+
0.25(1 − 2z̄)2

D1 +D2

∞∑
i=1

θi−1 (γ( ˆvar(erH,t+i) − ˆvar(erF,t+i)) + (γ − 1) ˆcov(erH,t+i + erF,t+i, ert+1,t+i−1))
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Now take the first line of the last expression and add the fourth and fifth lines of

(57):

− 0.25

D1 −D2

∞∑
i=1

θi−1 (γ( ˆvar(erH,t+i) − ˆvar(erF,t+i)) + (γ − 1) ˆcov(ert+i, erH,t+1,t+i−1 + erF,t+1,t+i−1))

+
0.25

D1 −D2

∞∑
i=1

θi−1 (( ˆvart(erH,t+i) − ˆvart(erF,t+i)) + 2 ˆcov(ert+i, rt+i−1))

+
0.5

D1 −D2

∞∑
i=1

θi ˆcovt(ert+i+1, (1 − γ)rt,t+i−1 − γrt+i)

In the second line we used that var(rH,t+i) = var(erH,t+i)+var(rt+i−1)+2cov(erH,t+i, rt+i−1).

Adding these terms, we have

−(γ − 1)
0.5

D1 −D2

∞∑
i=1

θi−1 ˆcov(ert+i, r
A
t+1,t+i) (59)

Here rAt+1,t+i = rAt+1 + ...+ rAt+i with rAt+s = 0.5(rH,t+s + rF,t+s).

To summarize, we have

z̃e,At = 0.5 +
0.5

D1 −D2

∞∑
i=1

θi−1Etert+i +
0.5

1 − θ

µ

D1 −D2

τDt

−(γ − 1)
0.5

D1 −D2

∞∑
i=1

θi−1 ˆcov(ert+i, r
A
t+1,t+i) (60)

+
0.25(1 − 2z̄)2

D1 +D2

∞∑
i=1

θi−1 ˆcov(erH,t+i + erF,t+i, (γ − 1)ert+1,t+i−1 + γert+i)

+
0.5(1 − γ)

D1 −D2

∞∑
i=1

θi−1
(

ˆcov(erH,t+i, (1 − µ)fnH,t+i + µfnF,t+i) − ˆcov(erF,t+i, µf
n
H,t+i + (1 − µ)fnF,t+i)

)
We can further rewrite this as follows. Introduce the parameters D = 2(D1 − D2)

and d = 2(D1 +D2). These are

D =
∞∑
i=1

θi−1 (γ ¯vart(ert+i) + 2(γ − 1) ¯covt(ert+i, ert+1,t+i−1)) (61)

d =
∞∑
i=1

θi−1
(
γ ¯vart(erH,t+i + erF,t+i) + 2(γ − 1) ¯covt(er

sum
t+i , er

sum
t+1,t+i−1)

)
(62)

where ersumt+i = erH,t+i + erF,t+i and ersumt+1,t+i−1 = ersumt+1 + ...+ ersumt+i−1. Define

fn,1t+i = (1 − µ)fnH,t+i + µfnF,t+i (63)

fn,2t+i = µfnH,t+i + (1 − µ)fnF,t+i (64)
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Then we have

z̃e,At = 0.5 +
1

D

∞∑
i=1

θi−1Etert+i +
µ

(1 − θ)D
τDt +

1 − γ

D

∞∑
i=1

θi−1 ˆcovt(ert+i, r
A
t+1,t+i)

+
(1 − 2z̄)2

d

∞∑
i=1

θi−1 ˆcovt(r
A
t+i − rt+i−1, (γ − 1)ert+1,t+i−1 + γert+i)

1 − γ

D

∞∑
i=1

θi−1
(

ˆcovt(erH,t+i, f
n,1
t+i) − ˆcovt(erF,t+i, f

n,2
t+i)

)
(65)

We can also write µ = 0.5 + (z̄− 0.5)D/d. Since the mean of the covariance moments is

equal to zero, this expression also applies after removing the hats from the covariances,

which leads to equation (41) in the paper, with the hedge term as in Section 4.4 of the

paper.

15


	capslow_June_30_2020
	tabslow_June_29_2020
	figures_June_30_2020
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4

	capslow_Online_Appendix_June_30_2020

