
VARIATIONS ON KURATOWSKI’S 14-SET THEOREM
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1. Introduction

The following result, from Kuratowski’s 1920 dissertation, is known as the 14-set
theorem.

Theorem 1.1. [8] Let E ⊆ X be a subset of a topological space. The number
of distinct sets which can be obtained from E by successively taking closures and
complements (in any order) is at most 14. Moreover, there are subsets of the
Euclidean line for which 14 is attained.

In this article we will see what happens when “closure” and “complement” are
replaced or supplemented with other basic topological operations.

Question 1.2. Let I be a subcollection of

{closure, interior, complement, intersection, union}.
What is the maximum number of distinct sets which can be generated from a single
subset of a topological space by successive applications of members of I?

Apparently Question 1.2 will require us to solve 25 = 32 different problems...
well, not really. Many of these are redundant, either because different choices of
I allow us to perform the same operations, or because different choices of I raise
algebraically isomorphic questions. (This is explained in Section 4.) Theorem 1.1
answers at least one case, and certainly many others are trivial. Finally, an example
of Kuratowski shows that if we allow all five operations, we may obtain infinitely
many sets. After a full reckoning, only two questions remain.

Question 1.3.
(1) What is the maximum number of distinct sets that can be generated from

a fixed set in a topological space by successively taking closures, interiors,
and intersections (in any order)?

(2) Same question, but with closures, interiors, intersections, and unions.

Question 1.3(1) was posed by Smith in a 1974 Monthly as Problem 5996, with
published solution given later by Yu [12]. The numerical answer to Question 1.3(2)
was stated by Langford in an abstract in the 1975 Notices of the AMS [9], but it
seems that no proof had appeared before the first version of the present article was
circulated. Recently Gardner and Jackson published a nice article [3] which also
solves Question 1.3(2) and gives a thorough discussion of many other aspects of
Kuratowski-type problems.

With a little additional work, we will finally solve a generalization which has not
appeared elsewhere.

Question 1.4. Same as Question 1.2, with n ≥ 2 sets initially given.
1
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Our approach to this topic, like Kuratowski’s, is almost entirely algebraic. The
basic language is the “topological calculus” which was developed by the Polish
school during the first half of the twentieth century. Prominent figures such as
Birkhoff, Stone, Halmos, and Tarski kept this program dynamic, intertwining topol-
ogy with the related fields of set theory, logic, and lattice theory. (And the incor-
poration of Hilbert spaces opened up new realms of noncommutative analysis, with
von Neumann at the center.) In the present article, the relevant topological calculus
is known as a “closure algebra,” and the questions above reduce to the calculation of
certain algebras generated by a specific partially ordered set. So while our subject
is apparently point-set topology, membership of points in sets plays a very minor
role!

Theorem 1.1 is actually easy to prove, almost certainly having acquired some ca-
chet from the unusual presence of the number 14. Readers who have never seen it be-
fore may enjoy experimenting at Mark Bowron’s website http://www.kuratowski.com,
which allows a visitor to construct an initial set, then counts the number of sets
generated by taking closures and complements. (A score of 14 “wins.”) Within the
substantial literature surrounding this theorem, the idea of considering different
collections of topological operations goes back at least to 1927 [13]. Other authors
have abstracted the algebraic content, or isolated the specific conditions under
which a topological space and subset generate 14 sets. Some of these variations are
described in the last section.

This article is intended for the nonspecialist in universal algebra - indeed, it was
written by one. Thus we define even basic terms, and do not always give the most
general formulations. It is hoped that many readers will find the methods at least
as interesting as the answers.

2. Monoids, posets, and the proof of Theorem 1.1

We start with the basics. Let X be an arbitrary set, and let P(X) be the set
of subsets of X. To endow X with a topology means to choose a distinguished
subset of P(X), called the open sets, which is closed under arbitrary unions and
finite intersections, and contains both X and the empty set. The complement of
an open set is a closed set. The (topological) closure of E ∈ P(X) is the smallest
closed set containing E; the interior of E is the largest open set contained in E.
Therefore the three functions “closure of,” “interior of,” and “complement of” can
naturally be viewed as operations on P(X). We will denote them by k, i, and
c, respectively, and write them to the left of the set, as is usual for operators
(or English sentences). We also denote the collection of maps P(X) → P(X) as
End(P(X)) (for “endomorphisms” – but these maps need not preserve any of the
algebraic structure we later attach to P(X)). Thus kiE should be read as “the
closure of the interior of E.” The reader should be aware that some authors place
topological operations to the right of the set, with an opposite rule for composition,
and the letters k and c are sometimes switched. With regard to the latter, our choice
was made with Kuratowski closure operators in mind.

Definition 2.1. [8] A Kuratowski closure operator on a set X is a map k ∈
End(P(X)) which satisfies, for any E,F ∈ P(X),

(1) k∅ = ∅;
(2) kkE = kE;
(3) kE ⊇ E;
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(4) kE ∪ kF = k(E ∪ F ).

Any Kuratowski closure operator k ∈ End(P(X)) is exactly the topological
closure operator for the topology on X whose open sets are {ckE | E ⊆ X} [8]. So
the choice of k is equivalent to the choice of topology on X, while c is independent
of topology. We write I ∈ End(P(X)) for the identity map and record the following
(redundant) consequences of our definitions:

(2.1) k2 = k, c2 = I, i = ckc, i2 = i, ic = ck, kc = ci.

Next we recall some definitions from algebra. A partial order on a set is a
reflexive antisymmetic transitive relation. A standard example is ≤ on R, but it is
not necessary that any two elements be comparable: P(X) is a partially ordered set
- a poset - with partial order given by inclusion. One notices that k and i preserve
the ordering, while c reverses it. (This means, for example, that E ⊇ F ⇒ kE ⊇ kF
- use Definition 2.1(4).) Now the collection of functions from any set into a poset can
also be made into a poset, where one function dominates another if and only if this is
true pointwise. This induces a partial order on End(P(X)): for ϕ,ψ ∈ End(P(X)),

ϕ ≥ ψ ⇐⇒ ϕ(E) ⊇ ψ(E), ∀E ∈ P(X).

Then item (3) of Definition 2.1 can be rewritten as k ≥ I, and evidently i ≤ I.
The poset End(P(X)) is also a monoid : a set with an associative binary op-

eration (in this case composition) and a unit. (So a monoid is a “group without
inverses.”) Note that order is preserved by an arbitrary right-composition:

ϕ ≥ ψ ⇒ ϕσ ≥ ψσ, ϕ, ψ, σ ∈ End(P(X)).

Order is also preserved by left-composition with k or i, but reversed by left-
composition with c.

“Ordered monoid” sounds frighteningly abstract, but we will only be concerned
here with subsets of End(P(X)). The advantage in the situation at hand is that we
may invoke a familiar friend from group theory (or universal algebra, to those in
the know): presentations. This just means that we will describe sets of operations
in terms of generators and relations, as demonstrated in the following lemma.

Lemma 2.2.
(1) Let k, i ∈ End(P(X)) be the closure and interior operators of a topological

space. Then the cardinality of the monoid generated by k and i is at most
7.

(2) For a subset of a topological space, the number of distinct sets which can be
obtained by successively taking closures and interiors (in any order) is at
most 7.

Proof. Composing k ≥ I on the left and right with i gives iki ≥ i. Composing
i ≤ I on the left and right with k gives kik ≤ k. We use both of these to calculate

(i)k ≤ (iki)k = i(kik) ≤ i(k)⇒ ik = ikik;

k(i) ≤ k(iki) = (kik)i ≤ (k)i⇒ ki = kiki.

Since k2 = k and i2 = i, the monoid generated by k and i contains exactly

{I, i, ik, iki, k, ki, kik}
(which may not all be distinct). This proves the first part, and the second part is
a direct consequence. �
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Using parentheses for “the monoid generated by,” the second sentence of Lemma
2.2(1) can be rewritten as |(k, i)| ≤ 7.

Proof of Theorem 1.1. It follows from (2.1) that any word in k, i, c can be reduced
to a form in which c appears either as the leftmost element only, or not at all. So
by the previous lemma

(2.2) (k, c) = (k, i, c) = {I, i, ik, iki, k, ki, kik, c, ci, cik, ciki, ck, cki, ckik}.

Thus 14 is an upper bound. To conclude the proof, it suffices to exhibit a so-called
(Kuratowski) 14-set : a subset of a topological space for which all of these operations
produce distinct sets. One example is S = {0}∪ (1, 2)∪ (2, 3)∪ [Q∩ (4, 5)] ⊂ R. �

We now investigate the order structures of (k, i) and (k, i, c) a little further. Via
our basic rules for order we find that

i ≤ I ≤ k; i ≤ iki ≤ [either of ki, ik] ≤ kik ≤ k.

By considering the set S we see that these (and the consequences from transitivity)
are the only order relations in (k, i), at least when X contains a copy of R. The
order structure of (k, i) is depicted in Figure 1, which is called the Hasse diagram
of the poset. Here a segment from ϕ up to ψ means that ϕ < ψ and there is no σ
satisfying ϕ < σ < ψ. (We write ϕ < ψ for ϕ ≤ ψ and ϕ 6= ψ.)

Again using S, we obtain that there are no necessary relations between the first
seven and last seven elements of (2.2). Since left composition with c reverses order,
the Hasse diagram of (k, i, c) (Figure 2) consists of two disjoint copies of Figure
1, one of which has been left-composed with c and vertically inverted. It was first
drawn by Kuratowski [8]; in essence all of the arguments in this section go back to
his dissertation.

3. Boolean lattices and the answer to Question 1.3

We have already mentioned that P(X) is a poset. Now we want to take advantage
of its richer structure as a Boolean lattice.

k

�����������������

CCCCCCCC

kik

{{{{{{{{

CCCCCCCC

I

<<<<<<<<<<<<<<<<< ki

CCCCCCCC ik

{{{{{{{{

iki

{{{{{{{{

i

Figure 1. The Hasse diagram of (k, i) for topological spaces con-
taining a copy of R.
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Recall that a lattice is a poset in which any two elements have a least upper
bound and a greatest lower bound. We write these binary operations as ∨ and
∧, respectively, and refer to them as join and meet. A lattice is distributive if it
satisfies the equality

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀ x, y, z

(or equivalently, the same equation with ∨ and ∧ everywhere interchanged). Finally,
a distributive lattice is Boolean if

(i) it contains a least element 0 and a greatest element 1, and
(ii) for every element a there is an element b, called a complement of a, such

that a ∨ b = 1 and a ∧ b = 0.
Complements in Boolean lattices are unique [5, Lemma I.6.1], so that we may
view complementation as a third (unary) operation. (Strictly speaking our use of
operations means that we have turned our Boolean lattice into a Boolean algebra,
but we will ignore the distinction.)

The poset P(X) is a Boolean lattice in which the three operations are nothing
but union, intersection, and set complementation. As the collection of all functions
from P(X) into the Boolean lattice P(X), the poset End(P(X)) also acquires
structure as a Boolean lattice, with pointwise operations. For ϕ,ψ ∈ End(P(X)),
E ∈ P(X), we have

(ϕ ∨ ψ)E = (ϕE) ∪ (ψE), (ϕ ∧ ψ)E = (ϕE) ∩ (ψE).

The complement (in the Boolean sense) of ϕ is the composition cϕ.
We approach Question 1.3 in the same way as Theorem 1.1, by enumerating

(k, i,∧) (respectively (k, i,∧,∨)), the algebra of operations in End(P(X)) which can
be expressed in terms of {I, k, i,∧} (respectively {I, k, i,∧,∨}). Then we identify
a single set which distinguishes all the operations under consideration.

3.1. Closures, interiors, intersections. Assuming X contains a copy of R, the
order structure of (k, i) is as shown in Figure 1. A first step is to add all irredundant
meets to this diagram; we start with ki ∧ ik and then notice that the meet of any

k

�����������������

CCCCCCCC ci

������������������

EEEEEEEEE

kik

{{{{{{{{

CCCCCCCC ciki

yyyyyyyy

EEEEEEEE

I

<<<<<<<<<<<<<<<<< ki

CCCCCCCC ik

{{{{{{{{
c

================== cki

EEEEEEEE cik

yyyyyyyy

iki

{{{{{{{{
ckik

yyyyyyyy

i ck

Figure 2. The Hasse diagram of (k, i, c) for topological spaces
containing a copy of R.
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k
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XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

I

TTTTTTTTTTTTTTTTTTT kik

ffffffffffffffffffffffffffff

wwwwwwwww

GGGGGGGGG

I ∧ kik

qqqqqqqqqq

MMMMMMMMMM ki

GGGGGGGGG

ffffffffffffffffffffffffffffffff ik

gggggggggggggggggggggggggg

wwwwwwwww

I ∧ ki

MMMMMMMMMM I ∧ ik

qqqqqqqqqq
ki ∧ ik

fffffffffffffffffffffffff

I ∧ ki ∧ ik iki

ffffffffffffffffffffffffffff

I ∧ iki

i

Figure 3. The meet semi-lattice generated by the poset (k, i)
(also the Hasse diagram of (k, i,∧)) for topological spaces con-
taining a copy of R.

two elements, both different from I, is already in our poset. It suffices to add the
meet of each element with I, and since k ∧ I = I and i∧ I = i, this gives five more
elements. The resulting structure is the meet semi-lattice generated by the poset
(k, i), since it has ∧ but not ∨.

A diagram of this 13-element poset is given in Figure 3. By construction it
is closed under ∧, and since i distributes across ∧ it is closed under i. Perhaps
surprisingly, it is also closed under k. To prove this, we need to show that for each
element ϕ in Figure 3, kϕ already appears in Figure 3.

This is clear for the seven elements from Figure 1. For the remaining elements,
we start with an easy observation. Since k preserves order, for any E,F ∈ P(X)
we have

k(E ∩ F ) ⊆ kE, k(E ∩ F ) ⊆ kF ⇒ k(E ∩ F ) ⊆ kE ∩ kF.

This means that

(3.1) k(ϕ ∧ ψ) ≤ kϕ ∧ kψ, ϕ, ψ ∈ End(P(X)).

Now let σ be any of ki∧ ik, I ∧ iki, I ∧ ki∧ ik, and I ∧ ki. Applying (3.1) to σ and
reducing gives kσ ≤ ki. But σ ≥ i, so kσ ≥ ki. We conclude that kσ = ki.

It is left to consider the two elements k(I ∧ ik) and k(I ∧ kik). Applying (3.1)
shows that each is ≤ kik. We claim that k(I ∧ ik) = kik, whence the larger element



KURATOWSKI’S 14-SET THEOREM 7

k(I ∧ kik) is kik as well. We calculate as follows:

ik = ik ∧ k(I)

= ik ∧ k[(I ∧ ik) ∨ (I ∧ cik)]

= ik ∧ [k(I ∧ ik) ∨ k(I ∧ cik)]

= [ik ∧ k(I ∧ ik)] ∨ [ik ∧ k(I ∧ cik)].

Inspecting the last term,

ik ∧ k(I ∧ cik) ≤ ik ∧ k(cik) = ik ∧ cik = 0.

Here 0 ∈ End(P(X)) is the map which sends every set to the empty set. We may
therefore omit this term from the previous equation, which gives

ik = ik ∧ k(I ∧ ik)⇒ ik ≤ k(I ∧ ik)⇒ kik ≤ k(I ∧ ik).

Since the opposite inequality was already established, the claim is proved.
It follows that (k, i,∧) has at most thirteen elements, and it can be checked that

each of the operations in Figure 3 produces a distinct set when applied to the set

T =
[{

1
n

: n ∈ N
}]
∪
[
[2, 4]−

{
3 +

1
n

: n ∈ N
}]

(3.2)

∪

[
(5, 7] ∩

(
Q ∪

∞⋃
n=1

(
6 +

1
2nπ

, 6 +
1

(2n− 1)π

])]
.

So the answer to Question 1.3(1) is thirteen. (We remind the reader that this result
first appeared as the solution to a Monthly problem in 1978 [12].)

3.2. Closures, interiors, intersections, unions. Still assuming that R embeds
in X to guarantee that (k, i,∧) is as large as possible, our first task here is to add
all irredundant joins of operations from Figure 3. Since End(P(X)) is distributive,
the resulting set will be closed under joins and meets: it is in fact the distributive
lattice generated by Figure 1.

Let us add in the two elements ki ∨ ik and (I ∧ ki) ∨ (I ∧ ik), and partition our
poset into four classes:

(1) i, k;
(2) I;
(3) iki, ki ∧ ik, ik, ki, ki ∨ ik, kik;
(4) I ∧ iki, I ∧ ki ∧ ik, I ∧ ik, I ∧ ki, (I ∧ ki) ∨ (I ∧ ik), I ∧ kik.

It may help to notice that the third class is the right-hand five of Figure 3, plus
ki∨ ik, while the fourth class is the middle five of Figure 3, plus (I ∧ ki)∨ (I ∧ ik).

Each class above is already a sublattice of End(P(X)), so an irredundant join
x1 ∨ x2 ∨ · · · ∨ xn can contain at most one xj from each class. Elements in the
first class occur in no irredundant joins. The identity I cannot be involved in an
irredundant join except with elements of the third class, which produces six more
elements. It is left to consider joins of the third and fourth classes. Using the
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distributive law, this turns up 14 more elements:

(I ∧ kik) ∨ ki ∨ ik, (I ∧ kik) ∨ ki, (I ∧ kik) ∨ ik,
(I ∧ kik) ∨ (ki ∧ ik), (I ∧ kik) ∨ iki,

(I ∧ ki) ∨ (I ∧ ik) ∨ (ki ∧ ik), (I ∧ ki) ∨ (I ∧ ik) ∨ iki,
(I ∧ ki) ∨ ik, (I ∧ ki) ∨ (ki ∧ ik), (I ∧ ki) ∨ iki,
(I ∧ ik) ∨ ki, (I ∧ ik) ∨ (ki ∧ ik), (I ∧ ik) ∨ iki,
(I ∧ ki ∧ ik) ∨ iki.

We conclude that the distributive lattice generated by the poset (k, i) has at most
35 elements, each of which is a join of elements from Figure 3. Since k distributes
across joins, this set is closed under left composition with k. The roles of k and i
are dual – see the next section for explanation – in the self-dual distributive lattice
generated by (k, i), so it is also closed under left composition with i. Finally, fans of
drudgery can check that the 35 operations are distinguished by the set T from (3.2).
(Skeptics may also consult the more sophisticated example given in [3].) Therefore
the answer to Question 1.3(2) is thirty-five.

4. Answers to Question 1.2

A complete answer to Question 1.2 is given in Table 1. All of the numbers ≤ 4
in Table 1 are trivial to verify, and some of the repetition is due to the fact that
in the presence of c, the inclusion of k or i (respectively ∧ or ∨) is equivalent to
the inclusion of k and i (respectively ∧ and ∨). Other repetition is due to duality,
which we now describe.

The dual of a poset is the same underlying set, with the ordering reversed. (So
its diagram is turned upside-down.) The Boolean lattice P(X) is isomorphic with
its own dual, via the complementation map c. This means that any operation ϕ on
P(X) has a dual operation, ϕ̄ = cϕcn, where by cn we mean the application of c to
each of the n arguments of ϕ. The action of ϕ̄ is vertically opposite to ϕ; k and i
are dual, as are ∧ and ∨.

We note that the duality map distributes over composition. For suppose that ϕ
has n arguments, and the jth argument is filled by a function of kj arguments, with
k total arguments in the composition. (It is not necessary that k =

∑
kj , because

Operations {I} {∧} {∨} {∧,∨}
{I} 1 1 1 1
{i} 2 2 2 2
{k} 2 2 2 2
{c} 2 4 4 4
{i, k} 7 13 13 35
{i, c} = {k, c} = {i, k, c} 14 ∞ ∞ ∞

Table 1. Solution to Question 1.2. Each entry is the maximum
cardinality of the algebras generated by the topological operations
in its row and column, and also the maximum number of operations
in these algebras which can be distinguished by a single subset.
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the n functions may have some arguments in common.) Then

ϕ(ψ1, ψ2, . . . , ψn) = cϕ(ψ1, ψ2, . . . , ψn)ck = cϕ(ψ1cj1 , ψ2cj2 , . . . , ψncjn
)

= cϕcn(cψ1cj1 , cψ2cj2 , . . . , cψncjn) = ϕ̄(ψ̄1, ψ̄2, . . . , ψ̄n).

Thus the restriction of the duality map to operations built out of {I, i, k, c,∧,∨}
amounts exactly to the interchanges i↔ k and ∧ ↔ ∨. This explains, for example,
why |(k, i,∧)| = |(k, i,∨)|. As for the assertion at the end of the previous section,
just observe that for any operation ϕ in the distributive lattice generated by (k, i),
iϕ = kϕ̄, which belongs to the lattice since it is self-dual and closed under left-
composition with k.

Finally we give a simplified version of Kuratowski’s example [8] showing that
(k, c,∧) = (i, k, c,∧,∨) can be infinite. Define a closure operator k on P(N) by

(4.1) k(A) =

{
∅, A = ∅;
[minA,∞) = {minA, 1 + minA, . . . }, otherwise;

for any A ∈ P(N). Since k satisfies Definition 2.1, it determines a topology on
N, the so-called “left order topology.” Let ϕ = I ∧ [k(k ∧ c)], and let E ⊂ N
be the even natural numbers. The reader can easily check that ϕj(E) = E ∩
[2j+2,∞), so the subset E distinguishes infinitely many operations of (i, k, c,∧,∨)
for this topological space. Unlike our other examples, E does not distinguish all
the different operations: for instance i(E) = ik(E) while i({1}) 6= ik({1}). The
existence of a set which does distinguish all the different operations is addressed in
the next section.

5. Closure algebras

We pause here for a digression which affords us a more convenient language and
sharpens some of the preceding results in surprising ways. These ideas are taken
from a beautiful 1944 article of McKinsey and Tarski [10].

A closure algebra is a Boolean lattice which is equipped with a closure operator
k satisfying the lattice version of Definition 2.1, i.e., with ∅, ∪, and ⊇ replaced with
0, ∨, and ≥. We naturally define i as the dual operation of k. A closure algebra
is singly-generated if every element can be obtained from a certain fixed generator
by some unary operation built out of {I, i, k, c,∧,∨}. Of particular interest is the
unique (up to isomorphism) free singly-generated closure algebra [10, Theorem 5.1],
which we refer to here as F . Freeness means that the set of relations is minimal.
In other words, if two unary operations agree on the generator of F , they agree on
every element of every closure algebra. This has the convenient consequence that
inside F , we can identify elements with unary operations; F is the algebra of unary
operations expressible in {I, i, k, c,∧,∨}.

The key observation is that any closure algebra can be identified with a Boolean
sublattice of some P(X), where X is a topological space and k becomes the as-
sociated closure operator [10, Theorem 2.4]. Thus Question 1.3 asks about the
cardinalities of subalgebras of F in which only some of {I, i, k, c,∧,∨} can be used.

Here are some other striking facts about F and the theory of closure algebras
[10, Theorem 5.10, Theorem 5.17, Appendix IV].

• F is isomorphic to a sub-closure algebra of the closure algebra of the Eu-
clidean line, so that a certain subset of the line distinguishes all unequal
unary closure algebraic operations.
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• The problem of deciding whether two expressions define the same oper-
ation in all closure algebras is “effectively solvable”: there is a decision
procedure whose run time is bounded by a function of the complexity of
the expressions.
• Whenever two expressions define the same operation in all closure alge-

bras, there is a formal proof – an analogue for closure algebras of Gödel’s
completeness theorem.

Logicians also know closure algebras (sometimes called “interior algebras”) as meta-
mathematical objects, since they can be used as frameworks for modal and intu-
itionistic logic [11, Chapter III].

6. Answers to Question 1.4

Now we alter our hypotheses by supposing that n ≥ 2 sets are initially given.
The theorems of McKinsey and Tarski apply to this case as well, so that we may
consider the free closure algebra generated by n elements. We will denote it as Fn,
with generators {Fn

j }1≤j≤n. Remarkably, Fn also embeds in the closure algebra of
the Euclidean line.

At first glance Question 1.4 may seem intractable or at least extremely tedious.
In the presence of ∧ or ∨ the cardinalities grow at least exponentially: for example,
the two sets T × R,R × T ⊂ R2 obviously generate at least 132 distinct subsets
under k, i, and ∧. It turns out, however, that all of the hard work is done, and the
situation stabilizes nicely for n ≥ 2. A complete solution to Question 1.4 is given
in Table 2; below we explain the key points.

Using a subscript to denote the ambient algebra, we first claim that |(k,∧)F2 | =
∞, proved in almost the same way as |F| = ∞. Let k be the closure operator of
(4.1), and let E = E0 and O be the even and odd natural numbers, respectively.
For j ≥ 1, define inductively elements of the closure algebra generated by E and O
by

Ej = Ej−1 ∩ k(kEj−1 ∩O).

Then the Ej = E ∩ [2j + 2,∞) are all distinct, establishing the claim. By duality
and inclusions, this justifies every occurrence of ∞ in Table 2.

The first column of Table 2 consists of algebras with unary operations only, so
the results of Table 1 can be applied to one generator at a time. For the last three
entries in the fourth row of Table 2, the algebra under consideration is the free

Operations {I} {∧} {∨} {∧,∨}
{I} n 2n − 1 2n − 1 Dn

{i} 2n 3n − 1 ∞ ∞
{k} 2n ∞ 3n − 1 ∞
{c} 2n 22n

22n

22n

{i, k} 7n ∞ ∞ ∞
{i, c} = {k, c} = {i, k, c} 14n ∞ ∞ ∞

Table 2. Solution to Question 1.4. Each number is the cardinality
of the subalgebra of Fn generated by the operations in its row and
column.



KURATOWSKI’S 14-SET THEOREM 11

Boolean algebra with n generators, which is well-known to have 22n

elements [5,
Theorem II.2.2(iii)].

The elements of (∧)Fn have the form Fn
j1
∧Fn

j2
∧ · · · ∧Fn

jk
, where 1 ≤ k ≤ n and

the jk ∈ {1, 2, . . . n} are distinct. Apparently they are in one-to-one correspondence
with the 2n− 1 nonempty subsets of the n generators. The situation for (i,∧)Fn

is
similar; now any element is a meet in which for each Fn

j , one of three possibilities
holds: Fn

j is present, iFn
j is present, or both are absent. (Recall that i distributes

across ∧.) Since we do not admit the empty meet, this allows 3n − 1 possibilities.
The other occurrences of 2n − 1 and 3n − 1 in Table 2 follow from duality.

Finally, (∧,∨)Fn is the free distributive lattice on n generators; determining its
cardinality Dn is sometimes called Dedekind’s problem. No explicit formula for
Dn is known, but asymptotically log2Dn ∼ C(n, bn

2 c), where C(n, k) denotes the
binomial coefficient and bxc the greatest integer ≤ x [7].

Each of the finite formulas of Table 2 extends to the case n = 1.

7. Other variations

It has not been our goal to survey the wealth of literature concerning extensions
of the 14-set theorem. The interested reader may consult the article [3], which takes
a sophisticated algebraic approach and contains many references. Here we simply
indicate some of the other directions in which the theorem has been generalized.

A natural idea is to study subalgebras of F in which the generating operations
include other topological operations built out of {k,∧, c}. This need not be too
abstract – for example, the operation “boundary of” (considered in Kuratowski-
type theorems by many authors) is k ∧ kc. And of course many basic topological
constructions are not closure algebraic. Kuratowski himself [8] noted that the
operation “accumulation points of,” which sends E ∈ P(X) to its derived set DE,
is not expressible in terms of k,∧, and c. (Let E = {0} ∪ {1/n : n ∈ N} ⊂ R.) See
[10, Appendix I] for remarks on “derivative algebra.”

One may also generalize Definition 2.1 by relaxing the postulates and/or replac-
ing P(X) with non-Boolean lattices. Among the sizable research in this direction,
we point out [6], which deals specifically with the 14-set theorem.

The present article is about the algebraic content of the 14-set theorem, but there
are also investigations into its topological content. We have seen that a topological
space X contains 14-sets when it is sufficiently rich, in particular when it contains a
copy of the Euclidean line. One can ask for characterizations of topological spaces
in which certain limitations occur, and a classification along these lines was given by
Aull [1]. Several authors have given necessary and sufficient conditions for a specific
subset E ⊆ X to be a 14-set; Chapman [2] gave an exhaustive description of all
possible degeneracies of the poset in Figure 1. Once again the reader is referred to
[3] for precise statements of these and other results.

Acknowledgments. The author benefited from several conversations with John
D’Angelo, including banter over pizza which sparked the writing of this article.
Thanks are also due to Mark Bowron and the anonymous referees for useful com-
ments on an earlier version.



12 DAVID SHERMAN

References

[1] C. E. Aull, Classification of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. As-
tronom. Phys. 15 (1967) 773-778.

[2] T. A. Chapman, A further note on closure and interior operators, this Monthly 69 (1962)

524-529.
[3] B. J. Gardner and M. Jackson, The Kuratowski closure-complement problem, New Zealand

J. Math (to appear).

[4] G. Grätzer, Universal Algebra, Springer-Verlag, New York, 1979.
[5] ———, General Lattice Theory, 2nd ed., Birkhäuser, Boston, 2003.
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