WEAKLY ALMOST PERIODIC FUNCTIONALS CARRIED BY HYPERCOSETS(1)

BY

CHARLES F. DUNKL AND DONALD E. RAMIREZ

Abstract. For G a compact group and H a closed normal subgroup, we show that a weakly almost periodic (w.a.p.) linear functional on the Fourier algebra of G/H lifts to a w.a.p. linear functional on the Fourier algebra of G.

In the case of a compact abelian group G, the dual of a closed subgroup can be identified with a quotient group of the whole dual \hat{G}. If G is not abelian, and H is a closed normal subgroup, then an identification space, \hat{H}, of the dual of H, \hat{H}, can be identified with a hypercoset structure on \hat{G}. Let H^\perp be the set of elements of \hat{G} whose kernel contains H. (Recall \hat{G} is the set of equivalence classes of continuous unitary irreducible representations of G.) Then \hat{H} is identified with the set of hypercosets of H^\perp, with the trivial representation $H \rightarrow \{1\}$ of course identified with H^\perp itself. As in the abelian case, the Fourier algebra $A(G)$ of G splits into a direct sum of $A(G/H)$-modules, one for each hypercoset of H^\perp. Again $A(G/H)$ itself corresponds to H^\perp. We show here that each of these modules is finitely generated, and use this result to show that weakly almost periodic (w.a.p.) linear functionals on $A(G/H)$ lift to w.a.p. linear functionals on $A(G)$ (the set of such is denoted $W(G)$).

We show that if G has an infinite abelian homomorphic image, then the space of Fourier-Stieltjes transforms of measures on G is not dense in $W(\hat{G})$, and $W(G)$ is not equal to $\mathcal{L}^\infty(\hat{G})$, the dual of $A(G)$. We will use some of the methods developed in our previous paper on w.a.p. functionals [6].

1. Notation and hypercosets. Let G be a compact nonabelian group. Using our previous notation [3, Chapters 7, 8] we let \hat{G} denote the set of equivalence classes of continuous unitary irreducible representations of G. For $\alpha \in \hat{G}$, choose $T_\alpha \in \alpha$, then T_α is a continuous homomorphism of G into $U(n_\alpha)$, the group of $n_\alpha \times n_\alpha$ unitary matrices where n_α is the dimension of α. We use $T_\alpha(x)_{ij}$ to denote the matrix entries of $T_\alpha(x)$, $1 \leq i, j \leq n_\alpha$, and $T_{\alpha ij}$ to denote the (continuous) function $x \mapsto T_\alpha(x)_{ij}$. Let $V_\alpha = \text{Sp} \{ T_{\alpha ij} : 1 \leq i, j \leq n_\alpha \}$ (where Sp denotes the linear span), then V_α is an n_α^2-dimensional space of continuous functions invariant under left

Received by the editors October 15, 1970.

AMS 1970 subject classifications. Primary 22C05, 43A40, 43–00.

Key words and phrases. Weakly almost periodic functional, quasi-uniform convergence, Fourier algebra, hypercoset, modules, Fourier-Stieltjes transforms.

(1) This research was supported in part by NSF contract number GP-19852.

Copyright © 1972, American Mathematical Society

427
and right translation by G. Further let $\chi_\alpha(x) = \text{trace } (T_\alpha(x)) = \sum_{i=1}^n T_\alpha(x)_{ii}$. The function χ_α is called the character of α and it, as well as V_α, is independent of the choice of $T_\alpha \in \alpha$.

For $\alpha, \beta \in \hat{G}$ one can form the tensor product $T_\alpha \otimes T_\beta$ of the two representations. This tensor product decomposes into irreducible components: $T_\alpha \otimes T_\beta \cong \sum_{r \in \delta} M_{ab}(\gamma) T_\gamma$, where $M_{ab}(\gamma) = \int_\alpha \chi_\alpha(x) \chi_\beta(x) \, dm_\alpha$, a nonnegative integer (m_α is the normalized Haar measure on G). This decomposition can also be written in the form $\chi_\alpha \chi_\beta = \sum_{r} M_{ab}(\gamma) \chi_\gamma$ (a finite sum). For $E, F \subset \hat{G}$, we define

$$E \otimes F = \{ \gamma \in \hat{G} : M_{ab}(\gamma) \neq 0, \text{ some } \alpha \in E, \beta \in F \}. $$

This operation makes \hat{G} into a hypergroup. For each $\alpha \in \hat{G}$, there is a conjugate $\tilde{\alpha} \in \hat{G}$ such that $\chi_{\tilde{\alpha}}(x) = (\chi_\alpha(x))^{-1} (x \in G)$. If $E \subset \hat{G}$ and $E \otimes E \subset E$, then E is called a subhypergroup, and if further $\overline{E} = \{ \tilde{\alpha} : \alpha \in E \} \subset E$ then E is called a normal subhypergroup.

For any set $S \subset G$, let $S^\perp = \{ \alpha \in \hat{G} : S \subset \text{kernel } T_\alpha \}$ then S^\perp is a normal subhypergroup. For $E \subset \hat{G}$, let $E^\perp = \bigcap_{\alpha \in E} \text{(kernel } T_\alpha)$, a closed normal subgroup of G. Helgason [7] has shown that if H is a closed normal subgroup of G then $(H^\perp)^\perp = H$.

If E is a normal subhypergroup of \hat{G} and $\alpha \in \hat{G}$ then $\alpha \otimes E$ is called a hypercoset of E. We will prove later that \hat{G} is the disjoint union of hypercosets of E.

Let X be an n-dimensional complex inner product space. Let $\mathcal{B}(X)$ be the space of linear maps: $X \to X$. The operator norm of $A \in \mathcal{B}(X)$ is defined to be $\|A\|_\infty = \sup \{ |A\xi| : \xi \in X, |\xi| \leq 1 \}$. The trace of A is defined to be $\text{Tr } A = \sum_{i=1}^n (A_{ii}, \xi_i)$ where $\{\xi_i\}_{i=1}^n$ is any orthonormal basis for X and (\cdot, \cdot) is the inner product in X. We define the dual norm to $\| \cdot \|_\infty$ by

$$\|A\|_1 = \sup \{ |\text{Tr } (AB)| : B \in \mathcal{B}(X), \|B\|_\infty \leq 1 \}. $$

One can show that $\|A\|_1 = \text{Tr } (|A|)$, where $|A| = (A^* A)^{1/2}$.

Let ϕ be a set $\{ \phi_\alpha : \alpha \in \hat{G}, \phi_\alpha \in \mathcal{B}(C^\infty_a), \sup_{\alpha} \|\phi_\alpha\|_\infty < \infty \}$. The set of all such ϕ is denoted by $L^{\infty}(\hat{G})$. It is a C*-algebra under the norm $\|\phi\|_\infty = \sup \{ \|\phi_\alpha\|_\infty : \alpha \in \hat{G} \}$ and coordinatewise operations (* denotes the operator adjoint).

Let $L^1(\hat{G}) = \{ \phi \in L^{\infty}(\hat{G}) : \|\phi\|_1 = \sum_{\alpha \in \delta} n_\alpha \|\phi_\alpha\|_1 < \infty \}$. Then $L^1(\hat{G})$ with the norm $\| \cdot \|_1$ is a Banach space and its dual may be identified with $L^{\infty}(\hat{G})$ under the pairing $\langle \phi, \psi \rangle = \sum_{\alpha \in \delta} n_\alpha \text{ Tr } (\phi_\alpha \psi_\alpha)$ (\phi \in L^1(\hat{G}), \psi \in L^{\infty}(\hat{G}))$. Let $\mu M(G)$, the measure algebra of G, then the Fourier transform of μ, $\hat{\mu}$, is the function $\alpha \mapsto \hat{\mu}_\alpha = \int_\alpha T_\alpha(x^{-1}) \, d\mu(x)$ ($\alpha \in \hat{G}$), and $\hat{\mu} \in L^{\infty}(\hat{G})$ with $\| \hat{\mu} \|_\infty \leq \| \mu \|$. If $f \in C(G)$ (the continuous functions on G), then $\hat{f}_\alpha = \int_\alpha T_\alpha(x^{-1}) \, f(x) \, dm_\alpha(x)$ ($\alpha \in \hat{G}$).

We will now define $A(G)$, the Fourier algebra of G. Let

$$A(G) = \{ f \in C(G) : \hat{f} \in L^1(\hat{G}) \},$$

then $A(G)$ is in fact isomorphic to $L^1(\hat{G})$, since for $\phi \in L^1(\hat{G})$ the function $f(x) = \sum_{\alpha \in \delta} n_\alpha \text{ Tr } (\phi_\alpha T_\alpha(x))$ ($x \in G$) is continuous and $\hat{f} = \phi$. Put $\|f\|_A = \|\hat{f}\|_1$. Further
\(A(G) \) is a (commutative) Banach algebra under the pointwise operations on \(G \); and its dual is \(\mathcal{L}^\omega(\hat{G}) \), under the pairing

\[
\langle f, \phi \rangle = \sum_a n_a \text{Tr} (\hat{f}_a \phi_a) \quad (f \in A(G), \phi \in \mathcal{L}^\omega(\hat{G}));
\]

for proofs see [3, p. 93].

Definition 1.1. For \(\phi \in \mathcal{L}^\omega(\hat{G}) \) define the carrier of \(\phi \), \(\text{cr} \phi = \{ \alpha \in \hat{G} : \phi_\alpha \neq 0 \} \). For \(E \subseteq \hat{G} \), let \(\mathcal{L}^\omega(E) = \{ \phi \in \mathcal{L}^\omega(\hat{G}) : \text{cr} \phi \subseteq E \} \), and let \(A(E) = \{ f \in A(G) : \text{cr} f \subseteq E \} \). In fact \(A(E) \) is the closed span of \(\{ V_\alpha : \alpha \in E \} \).

Proposition 1.2. The spaces \(A(E) \), \(E \subseteq \hat{G} \), are exactly the closed subspaces of \(A(G) \) which are invariant under left and right translation by \(G \). The dual of \(A(E) \) is \(\mathcal{Y}_0(E) \).

Proposition 1.3. Let \(E, F \subseteq \hat{G} \), then the closed linear span of

\[
\{ fg : f \in A(E), g \in A(F) \}
\]

is equal to \(A(E \otimes F) \).

Corollary 1.4. For \(E \subseteq \hat{G} \), \(A(E) \) is a subalgebra of \(A(G) \) if and only if \(E \) is a subhypergroup. Further \(A(E) \) is a conjugate-closed \((f \mapsto \bar{f}) \) subalgebra of \(A(G) \) if and only if \(E \) is a normal subhypergroup, and in that case

\[
A(E) = \{ f \in A(G) : f(h_1 x h_2) = f(x), \text{for all } h_1, h_2 \in E^\perp, x \in G \},
\]

the functions in \(A(E) \) constant on cosets of \(E^\perp \), a closed normal subgroup of \(G \).

Corollary 1.5. If \(E \) is a finite subhypergroup of \(\hat{G} \) then \(E \) is normal.

Proof. In fact \(A(E) \) is a finite dimensional subalgebra of a conjugate closed algebra \(A(G) \) and is thus itself conjugate-closed (since the maximal ideal space of \(A(E) \) is a finite set). \(\square \)

Remark 1.6. The Fourier algebra of a compact group \(G \) is the subject of [3, Chapter 8]. Helgason [7] constructed the duality between normal subhypergroups of \(\hat{G} \) and closed normal subgroups of \(G \). Translation-invariant uniformly closed linear subspaces of \(C(G) \) are discussed by Rider in [9]. What is observed by Iltis [8], that finite subhypergroups are normal, is implicit in Rider [9, p. 980].

2. Restrictions of representations to normal subgroups. In this section, \(G \) denotes a compact group, and \(H \) denotes a closed normal subgroup of \(G \). Define \(\hat{H} \) similarly to \(\hat{G} \), and denote the character of \(\gamma \in \hat{H} \) by \(\xi_\gamma \), and let \(T_\gamma^H \in \gamma \). Denote the normalized Haar measure of \(H \) by \(m_H \). There exists a natural homomorphism of \(G \) into the group of automorphisms of \(H \); namely, for \(x \in G \), let \(S_x h = x h x^{-1} \) (\(h \in H \)), then \(S_x \) is an automorphism of \(H \). Each \(S_x \) induces a permutation \(\hat{x} \) on \(\hat{H} \) such that \(\xi_\gamma(h) = \xi_{\gamma \gamma}(S_x h) \) (\(h \in H \)). Now define an equivalence relation on \(\hat{H} \) by \(\gamma_1 \sim \gamma_2 \) if and only if \(\gamma_2 = \gamma_1 \gamma_1^{-1} \) for some \(x \in G \), \(\gamma_1, \gamma_2 \in \hat{H} \). Denote the set of such equivalence classes by \(\hat{H} \). Let \(\alpha \in \hat{G} \) then \(T_\alpha \big| H \) is a continuous unitary representation of \(H \) and thus decomposes:

\[
T_\alpha \big| H = \sum_{\gamma \in \hat{H}} a_\gamma T_\gamma^H
\]
where the a_γ's are nonnegative integers and only finitely many are nonzero.

Theorem 2.1. Let $\alpha \in \hat{G}$, then there is a positive integer N_α and a class $\Gamma_\alpha \in \hat{H}$ such that

$$\chi_\alpha | H = N_\alpha \sum_{\gamma \in \Gamma_\alpha} \xi_\gamma.$$

Further each equivalence class in \hat{H} is finite.

Proof. This theorem is nothing but the compact group analogue to the well-known finite groups result (see e.g. [1, p. 278]). We sketch an argument. Write $\chi_\alpha | H = \sum c_\gamma \xi_\gamma$. Now $\chi_\alpha | H$ is invariant under each $S_x, x \in G$, thus if $\gamma_1 \sim \gamma_2$ then $c_{\gamma_1} = c_{\gamma_2}$. It remains to show that if $c_{\gamma_1} \neq 0$ and $c_{\gamma_2} \neq 0$ then $\gamma_1 \sim \gamma_2$. Now $d \mu = \sum_{\gamma \in \Gamma_\alpha} \xi_\gamma dm_H$ is a central measure in $M(G)$, and for any $\alpha \in \hat{G}$, μ is orthogonal to either all or none of the diagonal entry functions. If $\gamma' \notin \Gamma_\alpha$, then

$$\int_H \xi_{\gamma'} \left(\sum_{\gamma \in \Gamma_\alpha} \xi_\gamma \right) dm_H = 0.$$

Thus the class $\Gamma_\alpha \in \hat{H}$ is uniquely determined and is evidently finite. However any $\gamma \in \hat{H}$ appears in the restriction of some $\alpha \in \hat{G}$ (induced representation argument) and thus any class in \hat{H} is finite. □

Corollary 2.2. For any $\alpha, \beta \in \hat{G}$, either $n_{\beta} \chi_\alpha | H = n_\alpha \chi_\beta | H$ or $\int_H \chi_\alpha \bar{\chi}_\beta dm_H = 0$.

Proof. For $\alpha, \beta \in \hat{G}$, if $\Gamma_\alpha = \Gamma_\beta$ then $n_\alpha / N_\alpha = \sum_{\gamma \in \Gamma_\alpha} \chi_\gamma(e) = n_\beta / N_\beta$ (e is identity in G). If $\Gamma_\alpha \neq \Gamma_\beta$, then $\int_H \chi_\alpha \bar{\chi}_\beta dm_H = 0$ by the orthogonality relations for characters of H. □

Remark 2.3. Rider uses this corollary in [10].

Remark 2.4. For $\alpha \in \hat{G}$, $\alpha \in H^\perp$ if and only if $\Gamma_\alpha = \{1\}$ ({1} denotes the trivial representation $H \to \{1\}$), and in this case, $\chi_\alpha | H = n_\alpha = N_\alpha$.

Theorem 2.5. For $\alpha, \beta \in \hat{G}$, $\alpha \in \beta \otimes H^\perp$ if and only if $\Gamma_\alpha = \Gamma_\beta$. Thus \hat{G} is split into disjoint hypercosets, and these hypercosets are indexed by \hat{H}.

Proof. Let $\alpha \in \beta \otimes H^\perp$, then there exists some $\delta \in H^\perp$ such that $M_{\beta \delta}(\alpha) \neq 0$, that is $\chi_\delta \chi_\alpha = \chi_\alpha + \phi$, where ϕ is some nonnegative integer combination of characters. Now restrict to H to obtain

$$n_\delta N_\beta \sum_{\gamma \in \Gamma_\beta} \xi_\gamma = N_\alpha \sum_{\gamma \in \Gamma_\alpha} \xi_\gamma + \phi | H,$$

thus $\Gamma_\alpha \subset \Gamma_\beta$, hence $\Gamma_\alpha = \Gamma_\beta$.

Conversely if $\Gamma_\alpha = \Gamma_\beta$, then $(\chi_\delta | H)(\chi_\beta | H) = 1 + \phi$ (some ϕ as above). (This follows from the relation $M_{\gamma}(\{1\}) = \int_H | \xi_\gamma |^2 dm_H = 1$ for any $\gamma \in \hat{H}$.) This implies that $(\alpha \otimes \beta) \cap H^\perp \neq \emptyset$. Thus there is a $\delta \in H^\perp$ such that $M_{\alpha \delta}(\delta) \neq 0$, but

$$M_{\alpha \delta}(\delta) = \int_G \chi_\delta \bar{\chi}_\delta dm_G = \int_G \bar{\chi}_\delta \chi_\delta dm_G = M_{\delta \beta}(\alpha)$$

and so $\alpha \in \beta \otimes H^\perp$. □
Observe that the Fourier algebra of G/H is isomorphic to a closed subalgebra of $A(G)$, namely $A(H^\perp)$ (which we will denote by A_H), since $(G/H)^\perp$ may be identified with H^\perp. We will now decompose $A(G)$ into a direct sum of A_H-modules.

Theorem 2.6. To each $\Gamma \in \hat{H}$ there corresponds a closed subspace A_Γ of $A(G)$ which is also an A_H-module. Further each $f \in A(G)$ has a unique decomposition $f = \sum_{\Gamma \in \hat{H}} f_{\Gamma}$, where $f_{\Gamma} \in A_{\Gamma}$ and $\|f\|_A = \sum_{\Gamma \in \hat{H}} \|f_{\Gamma}\|_A$. Also the A_Γ's are the minimal closed left and right translation invariant A_H-submodules of $A(G)$.

Proof. For $\Gamma \in \hat{H}$, let $E_\Gamma = \{x \in G : \Gamma_x = \Gamma\}$, that is, the hypercoset of H corresponding to Γ. Then put $A_\Gamma = A(E_\Gamma)$. Clearly \hat{G} is the disjoint union of $\{E_\Gamma\}_{\Gamma \in \hat{H}}$, so the decomposition of $A(G)$ follows from the obvious decomposition of $L^1(\hat{G})$

Let $\Gamma \in \hat{H}$ and choose $x \in E_\Gamma$ then $E_{\Gamma} = \alpha \otimes H^\perp$, so that $E_{\Gamma} \otimes H^\perp = E_\Gamma$ and thus, by Proposition 1.3, $A_{H^\perp} \subset A_{\Gamma}$. So A_{Γ} is a closed A_H-submodule of $A(G)$. If a nontrivial closed left and right translation invariant A_H-module is contained in A_{Γ}, then it is determined by some nonempty subset $F \subset E_\Gamma$. But if $\alpha \in F$ and $\beta \in H^\perp$ then $\alpha \otimes \beta \in F$, thus F is a hypercoset, hence equals E_Γ. □

Remark 2.7. If G is abelian then each A_Γ has a single generator (in the algebraic as well as the topological sense) over A_H. In the general case for $\Gamma \in \hat{H}$ and some $\alpha \in E_\Gamma$, the functions $\{T_{\alpha ij} : 1 \leq i,j \leq n\}$ generate A_Γ topologically, but it is not clear that they do so algebraically. However the following is true.

Theorem 2.8. Let $\Gamma \in \hat{H}$, then A_Γ is a finitely generated A_H-module, that is there exists $g_1,\ldots,g_m \in A_{\Gamma}$ (some $m < \infty$) so that each $f \in A_\Gamma$ may be written as $f = \sum_{i=1}^{m} k_i g_i$, with $k_i \in A_H$. Further there exists a constant $M < \infty$, such that the functions k_i may be chosen with $\|k_i\|_A \leq M \|f\|_A$.

Proof. In a paper of Dunkl [2] the following is shown: let τ be a continuous unitary representation of H on a finite dimensional space V, and let $A(G, V)$ be the space of V-valued functions on G with each coordinate function in $A(G)$. Define $M(\tau) = \{f \in A(G, V) ; f(hx) = \tau(h)f(x) \text{ for all } h \in H, x \in G\}$, denoted $A(\tau)$ in [2]. Then $M(\tau)$ is a finitely generated (algebraically) A_H-module.

We now point out the applicability of this theorem to the present situation. Pick $\alpha \in \Gamma$, and let $V = V_\alpha H$. Recall $V_\alpha = \text{Sp}\{T_{\alpha ij} : 1 \leq i,j \leq n\}$ so that V is a finite dimensional space of continuous functions on H, and is in fact the left and right translation invariant (by H) space generated by $\{\xi_\gamma : \gamma \in \Gamma\}$. This shows that V depends only on Γ, that for any $f \in A_{\Gamma}$, $f|H \in V$, and finally that V is invariant under each $S_x, x \in G$ (that is, if $g \in V, x \in G$, then the function $h \mapsto g(xh^{-1})$ is in $V(h \in H)$). Observe that a continuous unitary representation τ of H is realized on V, namely right translation, with the inner product on V given by $(f,g)_H = \int_H \overline{f(h)} g dm_H (f,g \in V)$, and $\tau(h)f(h) = f(h_1h)$ ($f \in V, h, h_1 \in H$).

We claim that $M(\tau) = A_{\Gamma}$, in fact if $f \in A_{\Gamma}$ then assign to each $x \in G$ the function $f(x, \cdot) : h_1 \mapsto f(h_1x) = (R(x)f)(h_1)$. Now A_{Γ} is invariant under the right translation
R(x) so R(x)f|H ∈ V, thus f(x, ·) ∈ V. Further for x ∈ G, h ∈ H, f(hx, h_1) = f(h_1hx) = f(x, h), that is, f(hx, ·) = τ(h)f(x, ·). Finally to check the coordinate functions of f(x, ·) let g ∈ V and consider the function x ↦ (f(x, ·), g) = \int_H f(hx)g(h)dm_H = μ * f(x), where μ is the measure (g(h^{-1}))-1dm_H(h), and so μ * f ∈ A(G). Conversely, if f ∈ M(τ), so f is of the form f(x, h), with f(x, ·) ∈ V, then put f(x) = f(x, e). Thus f ∈ A(G) (by finite dimensionality of V, point evaluation is a bounded linear functional). Further for each x ∈ G let g = R(x)f|H, then g(h) = f(hx) = f(hx, e) = τ(h)f(x, e) = f(x, h) so the function g ∈ V, thus f ∈ A_r. Hence A_r = M(τ) and thus there exist generators g_1, · · · , g_m ∈ A_r (some m < ∞).

Now consider the bounded linear map T: A_r × A_r × · · · × A_r (m copies) → A_r defined by T(k_1, · · · , k_m) = \sum_{i=1}^m k_i g_i. By the above paragraph T is onto and so by the open mapping theorem there exists M < ∞ such that \{T(k_1, · · · , k_m) : \|k_i\|_A ≤ M\} ⊃ \{f ∈ A_r : \|f\|_A ≤ 1\}. □

3. Homomorphisms. Let π be a continuous homomorphism of a compact group G into a compact group K, and let H be the kernel of π. Then π induces the map π_1: C(K) → C(G), given by π_1f(x) = f(πx), f ∈ C(K), x ∈ G. The adjoint of π_1, denoted by π^*, takes M(G) into M(K). Further π_1 maps A(K) into A(G), since A(K) is spanned by the continuous positive definite functions and these are preserved by π_1. Also π_1|A(K) is a bounded operator on A(K) since each f ∈ A(K) is a sum f = f_1 + f_2 + i(f_3 - f_4), f_i positive definite and \sum_{i=1}^4 |f_i(e)| ≤ 2\|f\|_A. Finally the adjoint of π_1|A(K) is a bounded map \hat{π} : L^∞(G) into L^∞(K). Let M(\hat{G}), M(\hat{K}) be the closures of M(G) ⊂ M(K) in L^∞(G) and L^∞(K) respectively.

PROPOSITION 3.1. \hat{π}M(\hat{G}) ⊂ M(\hat{K}).

Proof. Let μ ∈ M(G), then \hat{π}μ satisfies the following: ⟨f, \hat{π}μ⟩ = \int_G f(x^{-1}) dμ(x), f ∈ A(G). Now let g ∈ A(K), then

⟨g, \hat{π}μ⟩ = ⟨π_1g, \hat{μ}⟩ = \int_G g(πx^{-1}) dμ(x) = \int_K g(k^{-1}) dπ^*μ(k) = ⟨g, (π^*μ)⟩.

Thus \hat{π}μ = (π^*μ) ∈ M(K). The continuity of \hat{π} finishes the proof. □

Observe that π factors into G → G/H → K, where G/H is identified with a closed subgroup of K. Further M(G/H) is identified with a closed subalgebra of M(G), namely m_H * M(G) (note m_H is an idempotent, see [3, Chapter 9]). Also L^∞((G/H) \cap L^∞(H^1)) and M((G/H) \cap L^∞(H^1)) (since m_H is the projection of L^∞(G) onto L^∞(H^1)).

Finally \hat{π} takes M(\hat{G}) onto M(\hat{K}), or L^∞(\hat{G}) onto L^∞(\hat{K}) if and only if π maps G onto K, for otherwise πG is a proper closed subgroup of K, and φ ∈ \hat{π}L^∞(\hat{G}) if and only if spt φ ⊂ πG (where the support of φ, spt φ, is the least compact subset E ⊂ K with the property that f ∈ A(K), f = 0 on a neighborhood of E implies ⟨f, φ⟩ = 0).
Now we investigate the effect of \(\hat{\pi} \) on \(W(\hat{G}) \), the weakly almost periodic (w.a.p.) elements of \(\mathcal{L}^\omega(\hat{G}) \). We state some appropriate definitions and results from our previous paper [6].

Proposition 3.2. \(\mathcal{L}^\omega(\hat{G}) \) is an \(A(G) \)-module. The action is defined by \(\langle g, f \cdot \phi \rangle = \langle fg, \phi \rangle \) (\(f, g \in A(G) \), \(\phi \in \mathcal{L}^\omega(\hat{G}) \)), and \(\| f \cdot \phi \|_\infty \leq \| f \|_A \| \phi \|_\infty \). Further \(\text{cr} (f \cdot \phi) \subseteq \text{cr} f \otimes \text{cr} \phi \).

Definition 3.3. For \(\phi \in \mathcal{L}^\omega(\hat{G}) \), one says that \(\phi \) is weakly almost periodic if the map \(f \mapsto f \cdot \phi \) is a weakly compact operator of \(A(G) \) into \(\mathcal{L}^\omega(\hat{G}) \) (\(f \in A(G) \)). The set of all such \(\phi \) is denoted by \(W(\hat{G}) \).

Definition 3.4. Let \(B = \{ f \in A(G) : \| f \|_A \leq 1 \} \). For \(\alpha \in \hat{G} \), let \(B_\alpha = B \cap V_\alpha \). Let \(E = \bigcup_{\alpha \in \hat{G}} B_\alpha \).

Some properties of \(W(\hat{G}) \) (see [6]):

1. \(W(\hat{G}) \) is a closed submodule of \(\mathcal{L}^\omega(\hat{G}) \).
2. For \(\phi \in \mathcal{L}^\omega(\hat{G}) \) to be in \(W(\hat{G}) \) it is necessary and sufficient that \(\{ f_n \cdot \phi \} \) have a weakly convergent subsequence for any sequence \(\{ f_n \} \subseteq E \) (also true if \(E \) is replaced by \(B \)).

Theorem 3.5. Let \(\pi \) be a continuous homomorphism of \(G \) into \(K \) (compact groups). Then \(\hat{\pi} W(\hat{G}) \subseteq W(K) \).

Proof. Suppose \(\phi \in W(\hat{G}) \), and \(\{ f_n \} \) is a bounded sequence in \(A(K) \). Then \(\{ \pi_1 f_n \} \) is a bounded sequence in \(A(G) \), and there exists a subsequence such that \((\pi_1 f_n) \cdot \phi \) converges weakly to \(\psi \in \mathcal{L}^\omega(\hat{G}) \). But \(\hat{\pi} ((\pi_1 f_n) \cdot \phi) = f_n \cdot (\hat{\pi} \phi) \), so \(f_n \cdot \hat{\pi} \phi \) converges weakly to \(\hat{\pi} \psi \in \mathcal{L}^\omega(\hat{K}) \) (for \(\hat{\pi} \), being strongly continuous, is weakly continuous). Hence \(\hat{\pi} \phi \in W(\hat{K}) \). \(\square \)

Henceforth we assume \(\pi \) is onto \(K \) so we identify \(K \) with \(H^\perp \), and \(\mathcal{L}^\omega(\hat{K}) \) with \(\mathcal{L}^\omega(H^\perp) \). We have just seen that the restriction map \(\hat{\pi} : \mathcal{L}^\omega(\hat{G}) \rightarrow \mathcal{L}^\omega(H^\perp) \) takes \(W(\hat{G}) \) into \(W(\hat{K}) \). We will now show that in fact \(\hat{\pi} W(\hat{G}) \cap \mathcal{L}^\omega(H^\perp) = W(\hat{K}) \).

Definition 3.6. Let \(\{ \phi_n \} \) be a sequence in \(\mathcal{L}^\omega(\hat{G}) \). Say \(\phi_n \rightharpoonup \phi \) \(\in \mathcal{L}^\omega(\hat{G}) \) quasi-uniformly if \((\phi_n)_a \rightarrow \phi_a \) for each \(\alpha \in \hat{G} \), and for each \(\varepsilon > 0 \), \(N = 1, 2, 3, \ldots \), there exist integers \(m_1, \ldots, m_k \geq N \), such that \(\min_{1 \leq i \leq k} \| (\phi_{m_i})_a - \phi_a \|_\infty < \varepsilon \) for each \(\alpha \in \hat{G} \).

Theorem 3.7 [6]. Let \(\{ \phi_n \} \subseteq \mathcal{L}^\omega(\hat{G}) \). Then \(\phi_n \rightharpoonup \phi \in \mathcal{L}^\omega(\hat{G}) \) weakly if and only if \(\sup_n \| \phi_n \|_\infty < \infty \), and every subsequence of \(\{ \phi_n \} \) converges quasi-uniformly to \(\phi \).

Theorem 3.8. Let \(\phi \in W(\hat{K}) \), that is, \(\phi \in \mathcal{L}^\omega(H^\perp) \), and for each bounded sequence, \(\{ f_n \} \subseteq A(K) = A_H \) (see previous section), \(\{ f_n \cdot \phi \} \) has a weakly convergent subsequence. Then \(\phi \in W(\hat{G}) \) (note \(\phi_a = 0 \) for \(\alpha \notin H^\perp \)).

Proof. Let \(\{ f_n \} \subseteq E = \bigcup_a B_a \), with \(f_n \in B_{a_n} \), \(n = 1, 2, 3, \ldots \). We must show that \(\{ f_n \cdot \phi \} \) has a weakly convergent subsequence. There are two possibilities for \(\{ a_n \} \):

1. There are infinitely many distinct cosets \(a_n \otimes H^\perp \). That is, there exists a subsequence \(f_{n_j} \) such that the sets \(\text{cr} (f_{n_j} \cdot \phi) \subseteq \bar{a}_{n_j} \otimes H^\perp \) are all disjoint. Then \(f_{n_j} \cdot \phi \rightharpoonup 0 \) weakly by Theorem 3.7.
(2) Infinitely many $\alpha_n \in \alpha \otimes H^\perp$, some $\alpha \in \hat{G}$. Thus there is a bounded subsequence f_{n_j} in A_Γ, where $\Gamma = \Gamma_\alpha$ (recall Theorem 2.6). By Theorem 2.8, there exist $g_1, \ldots, g_m \in A_\Gamma$ and functions $h_{ij} \in A_H$, and $M < \infty$, such that $f_{n_j} = \sum_{i=1}^m h_{ij} g_i$, and $\|h_{ij}\|_A \leq M$, all i, j. By successively extracting subsequences from $\{h_{11}\}, \{h_{22}\}, \ldots, \{h_{mj}\}$ and reindexing, we obtain $\psi_1, \ldots, \psi_m \in L^\infty(H^\perp)$ such that $h_{ij} \cdot \psi_i$ weakly, $i = 1, \ldots, m$. The map $\psi \mapsto g_i \cdot \psi$ on L^∞ is strongly, hence weakly continuous, thus

$$f_{n_j} \cdot \phi = \sum_{i=1}^m g_i \cdot (h_{ij} \cdot \phi) \rightharpoonup \sum_{i=1}^m g_i \cdot \psi_i \text{ weakly.} \qed$$

Corollary 3.9. If $W(\hat{K}) \neq L^\infty(\hat{K})$ then $W(\hat{G}) \neq L^\infty(\hat{G})$. If $M(\hat{K}) \neq W(\hat{K})$ then $M(\hat{G}) \neq W(\hat{G})$. (Recall from [6] that $M(\hat{G}) \subset W(\hat{G})$.)

Corollary 3.10. If G has an infinite abelian image, then $M(G) \neq W(\hat{G}) \neq L^\infty(\hat{G})$.

Proof. If K is an infinite compact abelian group, then $M(\hat{K}) \neq W(\hat{K}) \neq L^\infty(\hat{K})$ (see [3, Chapter 4] and [6]). \square

Remark 3.11. In [4] we show that $W(\hat{G}) \neq L^\infty(\hat{G})$ for any infinite compact group G. In [5] we show that $M(\hat{G}) \neq W(\hat{G})$ for any compact group G which contains an infinite abelian subgroup.

Bibliography

5. ———, *Fourier-Stieltjes transforms and weakly almost periodic functionals for compact groups* (to appear).

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903