HELSON SETS IN COMPACT AND
LOCALLY COMPACT GROUPS

Charles F. Dunkl and Donald E. Ramirez

We continue our investigation (begun in [1] and [4]) of the measure space My(G),
where G denotes an infinite, nondiscrete, locally compact group, not necessarily
abelian. In the present paper, we show that each measure in M(G) is continuous.
We further show that if G is compact or metrizable, then a Helson set cannot sup-
port a nonzero measure in Mo(G) (a Helson set is a compact set P in G such that
every continuous function on P can be extended to a function in the Fourier algebra
A(G) of the group G).

Let G denote an infinite, nondiscrete, locally compact group (not necessarily
abelian) with left-invariant Haar measure mg, and let M(G) denote the space of
finite regular Borel measures on G. We use the notation and machinery developed
by P. Eymard [5] as well as that in [2]. Let = denote the equivalence classes of the
continuous unitary representations on G, and for 7 € Z, let .#'; denote the repre-
sentation space. For p € M(G), we define the function I on ¥ by

T i = SG 7(x) dp(x) .

For 4 C Z, let

lullg = sw il lo:mes},

where ||/i;|. denotes the operator norm on #,. We define C*(G) to be the com-

pletion of LYG) in | || (see [5, p. 187]). Let {p} denote the subset of = con-

taining just the left-regular representation of G on L2(G). Let C*(G) denote the

completmn of LYG) in || "p (see [5, p. 187]). If G is abelian or compact, then
C*(G) = Cp(G).

If 4 € M(G), we let p(u) denote the bounded operator defined on L2(G) by
h+ u *h (h € L%G)) with operator norm Hp(u Hp Let #(L2(G)) denote the
bounded operators on Lz(G) Then CE(G) can be identified with the closure in
#B(L2(G)) of the set p(LY(G)) = {p(f): f € LY(G)}. If G is abelian, then C}(G) is

isomorphic to the space CO(G) of continuous functions on the dual group G that
vanish at infinity; and if G is compact, then Cp(G) @o(G) (see [1]).

Let VN(G) denote the von Neumann subalgebra of & (L2(G)) generated by the
left translation operators (see [5, p. 210]). If u € M(G), then p(u) € VN(G). Fur-
thermore, we have the inclusion Cp(G) C VN(G). ]’.f G is abelian, then
VN(G) = L (G); and if G is compact, then VN(G) = 2*(G) (see [1]

Let B(G) denote the linear subspace of CB(G) (the continuous bounded functions
on G) spanned by the continuous, positive-definite functions. Then B(G) can be
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identified with the dual space of C*(G) (see [5, p. 192]). For f € B(G), let |f| g de-
note the norm of f as a linear functional on C*(G). Now let A(G) be the closed sub-
algebra of B(G) generated by the continuous, positive-definite functions with com-
pact support (see [5, p. 208]) If Gis abella.n then A(G) = L1(G); and if G is com-
pact, then A(G) = 21(G) (see [1]).

The reader familiar with the abelian or compact case will not be surprised to
find that the dual of A(G) is VN(G); that is, A(G)* = VN(G) (see [5, p. 210]). Also,
A(G) is a VN(G)-module; that is, for T € VN(G) and f € A(G), we define Txf € A(G)
by <T *1, S> = <f, TS>, where < - ) denotes the pairing of A(G) with its dual
space VN(G), and where T is given by (g, T> <g, > (here g denotes the ele-
ment of A(G) defined by g(x) = g(x~1); see [5, p. 212]). If G is abelian, then L1(G)
is an L°°(G) module by pointwise multiplication, and if G is compact, then 21(G) is
an 2 *(G)-module by coordinatewise multiplication. If g € M(G) and f € A(G), then
p(r) *f is precisely u *f [5, p. 215]. The basic inequality that we shall need is the
relation |T*f]| o < T vn|lflla (T € VN(G), f € A(G)) (see [5, p. 213]).

Let Bp(G) denote the functions f € B(G) for which

sup {

Then Bp(G) can be identified with the dual space of Cg(G) (see [5, p. 192]).

In our paper [1], we introduced the notation Mg(G) = {1 € M(G): p(n) € C*(G)}.
This notation differs by a dash from that of one of our other papers [4]. For meas-
ures supported on compact sets, the notational differences disappear (see Proposi-
tion 3). We have chosen to define the larger space to prove a slightly stronger re-
sult. In particular,

S f(x) g(x)dmg(x)|: g € LI(G), ngnp_<__1} L oo,
G .

z

L'@P > '@ > 1Y@), since [nlp<lulz < el (e M@).

THEOREM 1. Let p € Mo(G). Then p is continuous.

Proof. Define the map E: M(G) — C by E(p) = p({e}) (1 € M(G)). We begin
by showing that E is continuous on M(G) with the norm || -[|,. Let {a} bea
neighborhood basis of e in G. Let {fa} be a collection of functions from A(G)
with the following properties: fy(e) =1, |[fa]la =1, fo is positive-definite, and
support (f,) C @. Now

|E(p)| = lim |S fodi
o G

lim | (1 *10) ()] < Jutalla < It ynlltals

o) llvae = Help-

Since we can extend E to p(M(G)) VN (closure in VN(G)), it is easy to see that
E(p*xp*) = ExeG [u.( {x})[2 , and this implies that E =0 on LY(G).
Let p € My(G). Then p xu* e C;(G), since CS(G) is a x-algebra. Since E =0

on LY(G), E=0 on LI (G) VN = C}(G). Thus E(u*p*), which is 2 eclpdxD)|?,
has the value zero. Thus u is continuous. ® .
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COROLLARY 2. If p € M(G) and p(p) is unitary, then ExeGlU({x}”Z =51
Proof. Observe that E(u*p*) = E(6,)=1. ®

Let P be a compact subset of G. We denote by Mo(P) the space M(P) N Mo(G),
and by Moy (P) the space

{s e M(P): p € LITG)Z = C*G)} .

We now show that the spaces My(P) and Mgy (P) coincide.
PROPOSITION 3. Let P be a compact subset of G. Then My(P) = Moy, (P).

Proof. The inclusion Mgy (P) € Mo(P) is obvious. Our results in [4] show that
Mo(P) Cc L (T)‘O where U is some relatively compact neighborhood of P. It re-
mains to show that the topologies on L(U) from the norms | - || and || - ||x are
equivalent. This follows from the relation A(G)|U = B(G) | U. -

Definition. Let P C G be a compact subset of G such that A(G) | P =C(P)
(equivalently, for p € M(P) suppose | 1| is equivalent to ||;.L||p or |u|x). We
say then that P is a Helson sef. Note that this is the same as saying that
B(G) | P = C(P).

We shall show (under the condition that G is compact or metrizable) that no non-
zero measure supported in a Helson set can be in' Mg(G).

THEOREM 4. If P is a Helson set in a compact group G and 1 € MO(P); then
L =0,

Proof. As expected, the proof is modelled on the abelian analogue due to H.
Helson (see [7, p. 119]).

For a bounded Borel function ¢ on P, we let Ty be defined on My(P) by the
relation :

Tg(n) = qusdu (1 € Mo(P)) .

Now Tg is a continuous linear functional on Mq(P). Since Mg(P) can be identified
Wlth a closed subspace of @ (G) via the Fourier transform %, we can extend Tg to
G) Thus there exists a ¥ € Z1G) = ©y(G)* (see [2, Section 8.3.9]) such that

(u) = Tr(fiy) for p € Mg P) (Tr denotes the trace). Since the Fourier algebra
A(G) of G is isomorphic to & YG) via &, there exists an f € A(G) c C(G) with

§ gan =mey) = ( ran (e Moo,
G P

We now use the fact that M (P) is a band [1]. This implies that if p € My(P),

then so is gdu (g € C(G)). Hence S pgdu = S fgdp (g € C(G)). It follows that
P P
¢du = fdp.

Let p € MO(P), and suppose by way of contradiction that p # 0. By Theorem 1,
|t is continuous, and thus the support S of p is a nonempty, perfect subset of P.
We shall show that S is not extremally disconnected by proving that under our hy-
potheses G is metrizable.
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Let - denote the normal subhypergroup in G generated by {a € G: Lo # o}
and let H = #'* be its annihilator in G; that is, let

?

H={xe€GT,x)=1  ifaex}
a

(see [6]). Now #* is a closed (hence compact) normal subgroup of G, and

HLL = 5 (where s+t = {a € G: T,(x)=1  forall x e HL}).
o

We now show that H is a finite subgroup of G. We need the fact that if H is a
Helson set (so that A(H) = C(H)), then H is finite. Several proofs of this are known.
For example, observe that A(H) is always weakly sequentially complete [3] but that
C(H) is weakly sequentially complete only if H is finite.

Let my; be the Haar measure on H. Then p = my*pu, and p(E) = u(xE) for

each Borel set E and each x € H. It follows that S is a union of cosets of H. This
implies that H is a Helson set, and therefore H is finite.

Now (G/H)" = 4 [6, p. 784], and this set is countable. Thus G/H is metrizable
(as is H). Thus G is metrizable (by the Kakutani-Birkhoff characterization of
metrizable groups). .

Now we can assert the existence of a point p € G that is in the closure of each
of two disjoint open subsets of S, say V; and V,. Finally, let x; be the character-
istic function of V;; we then have the required contradiction of x, di = fdu (for
some f € C(G)). W

- Observe that every compact group has an infinite Helson set, provided the group
contains an infinite abelian subgroup (see [7, p. 166]). This follows from the exten-
sion theorem for the Fourier algebra of a closed subgroup of a compact group [2,
Section 8.6.4].

THEOREM 5. Lel P be a Helson set in a locally compact metrizable group G.
If 1 € Mo(P), then p = 0.

Proof. Let ¢ be a bounded Borel function on P. Let Ty be defined on Mq(P)
by the relation Tg(v) = S ¢dv (v € Mo(P)). Now T¢ is a continuous linear func-
P
tional on My(P). Since M(P) can be identified with a closed subspace of C;(G) via

the map v — p(v), we can extend Ty to CE(G). Thus there exists an
fe Bp(G) c ¢B(G) (where Bp(G) is the dual space of CE(G)) such that

S ¢pdy = 5 fdv (v € My(P)) [5, p. 192]. But My(P) is a band, and therefore
P P

‘S‘ dgdy = S fgdv (g € CB(G), v € My(P)). Thus ¢dv =fdv. Now we proceed
P P
as in the abelian and compact cases. ®

COROLLARY 6. If G is a locally compact, metrvizable (nondiscrete) gvoup,
then A(G) # Cy(G).

Proof. Let U be a relatively compact open subset of G. Then L!(U) # {0},
But if A(G) = C3(G), then U is a Helson set. ™
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