LOCALLY COMPACT SUBGROUPS
OF THE SPECTRUM OF THE MEASURE ALGEBRA
Charles F. Dunkl and Donald E. Ramirez
Communicated by K. H. Hofmann

The maximal ideal space Δ_G of the measure algebra $M(G)$ of a locally compact abelian group G is a compact commutative semitopological semigroup. In this paper a class of locally compact subgroups of the closure of \hat{G}, the dual group of G, in Δ_G is characterized. Each such group is the dual of the abstract group G with some stronger locally compact topology than that of G. There is no more than one such group about any idempotent in the closure of \hat{G}. In a previous paper the authors showed that every stronger locally compact topology on G determines an idempotent in the closure of \hat{G}. In other words, an exact description is given of those idempotents in the closure of \hat{G} which are contained in locally compact maximal subgroups of Δ_G.

NOTATION. Denote the dual of an LCA (locally compact abelian) group G by \hat{G}. For LCA groups G and H, and a morphism (continuous homomorphism) $\phi: G \to H$, there exists the dual morphism $\hat{\phi}: \hat{H} \to \hat{G}$, defined by $\hat{\phi}\gamma(x) = \gamma(\phi x)$ for $x \in G$, $\gamma \in \hat{H}$. For G an LCA group, $M(G)$ denotes the measure algebra, and Δ_G denotes the maximal ideal space of $M(G)$. As

This research was supported in part by NSF contract number GP-19852.
usual, we identify Δ_G with the space of nonzero multiplicative linear functionals on $M(G)$ furnished with the Gelfand topology. Let $M_d(G)$ be the closed subalgebra of discrete measures and $L^1(G)$ the ideal of absolutely continuous measures. For $\mu \in M(G)$, $\hat{\mu}$ is the Fourier-Stieltjes transform given by $\hat{\mu}(\gamma) = \int_G \gamma d\mu$, and $\hat{\mu}$ is the Gelfand transform, a continuous function on Δ_G. We will identify \hat{G} with a subset of Δ_G, so that $\hat{\mu}(\gamma) = \hat{\nu}(\gamma)$ for $\mu \in M(G)$, $\gamma \in G$. For $x \in G$, let δ_x be the unit mass at x. Generally we will use additive notation for G, and multiplicative notation for \hat{G}.

Henceforth G denotes a fixed LCA group.

We now recall some facts about Raikov systems.

DEFINITION 1. A nontrivial class \mathcal{F} of σ-compact subsets of G is called a Raikov system if

1) $A \in \mathcal{F}$, B a σ-compact subset of G and $B \subseteq A$ imply $B \in \mathcal{F}$,

2) if $\{A_n\}_{n=1}^\infty \subseteq \mathcal{F}$ then $\bigcup_{n=1}^\infty A_n \in \mathcal{F}$,

3) $A, B \in \mathcal{F}$ implies $A + B \in \mathcal{F}$, and

4) $A \in \mathcal{F}$ and $x \in G$ imply $A + x \in \mathcal{F}$.

THEOREM [5]. Given a Raikov system \mathcal{F} there exists a unique bounded algebraic projection P on $M(G)$ such that $PM(G) = \{\mu \in M(G): \mu \text{ is carried by some } A \in \mathcal{F}\}$ and the kernel of P, an ideal, is the set $\{\mu \in M(G): |\mu|A = 0 \text{ for all } A \in \mathcal{F}\}$.

We will call such a projection a Raikov projection.

DEFINITION 2. Let $\phi: H \to G$ be a monomorphism. Let G_H be the group G topologized so that ϕ_H
has the H-topology and is open in G_H. Note G_H is LCA and the identity: $G_H \to G$ is continuous. Let P be the Raikov projection associated with the Raikov system generated by the G_H-compact sets. We say P is the Raikov projection induced by ϕ.

DEFINITION 3. Let $\phi: H \to G$ be a morphism. Define $\phi^*: M(H) \to M(G)$, a homomorphism, by $\phi^*\mu(E) = \mu(\phi^{-1}E)$ for each Borel set $E \subseteq G$, $\mu \in M(H)$. Equivalently $(\phi^*\mu)(\gamma) = \hat{\mu}(\hat{\phi}\gamma)$, for $\gamma \in \hat{G}$. If ϕ is a monomorphism then ϕ^* is an isometric isomorphism of $M(H)$ into $M(G)$ (see [4] and [6]).

PROPOSITION 1. With the hypotheses of the two prior definitions, the range of P may be identified with $M(G_H)$. If further, ϕ maps H onto G, then ϕ^* is an isometric isomorphism of $M(H)$ onto $M(G_H)$. We now single out an important set of operators on $M(G)$.

DEFINITION 4. Say T is an R-homomorphism of $M(G)$ if T is a bounded nonzero homomorphism of $M(G)$ into itself, such that $(T\mu)|E = T(\mu|E)$ for $\mu \in M(G)$, E Borel $\subseteq G$. That is, T commutes with restriction to Borel sets. If T is a projection and an R-homomorphism, then T is called an R-projection.

PROPOSITION 2. If T is an R-homomorphism, and $x \in G$, then $T\delta_x = \chi_T(x)\delta_x$, where χ_T is some character (not necessarily continuous) of G. If further T is an R-projection, then $T\delta_x = \delta_x$.

Proof. For any $\mu \in M(G)$, $T\mu = T(\mu*\delta_o) = T\mu*T\delta_o$, but $T \neq 0$, so $T\delta_o \neq 0$. For any $x \in G$, $T\delta_x|\{x\}$ = $T\delta_x$, so there exists a complex number $\chi_T(x)$
such that $T \delta_x = \chi_T(x) \delta_x$. But since $T \delta_{x+y} = T(\delta_x \ast \delta_y) = T \delta_x \ast T \delta_y$, we have $\chi_T(x+y) = \chi_T(x) \chi_T(y)$, for all $x, y \in G$, and $\chi_T(0) \neq 0$ so χ_T is a character of G. If T is an R-projection, then $(\chi_T)^2 = \chi_T$, so $T \delta_x = \delta_x$, all $x \in G$. □

COROLLARY 3. The set of R-homomorphisms is closed under composition, and is a semigroup with identity I (where I is the identity map on $M(G)$).

Proof. It suffices to observe, that $S \circ T(\delta_o) = S(\delta_o) = \delta_o$ so $S \circ T \neq 0$, for R-homomorphisms S and T. □

We briefly sketch the details of the isomorphism between the semigroup \mathcal{E} of R-homomorphisms and the compact space Δ_G (see [2, Chapter 1]). For each $\tau \in \Delta_G$ there exists a unique generalized character $\{f^\mu_\tau\}$, where $f^\mu_\tau \in L^\infty(\mu)$ for each μ of the form $\mu = \exp |\nu|$, $\nu \in M(G)$; and for each $\lambda \in L^1(\nu)$ (that is, the space of elements of $M(G)$ which are absolutely continuous with respect to ν) we have the relation $\chi(\tau) = \int_G f^\mu_\tau d\lambda$. Observe that for each such μ, that $\tau | L^1(\mu)$ is a bounded linear functional and thus determines an element f^μ_τ of $L^\infty(\mu)$ with the required property. Note further that if ν_1 and ν_2 are both exponentials, and $\nu_1 \in L^1(\nu_2)$ then $f^{\nu_2}_\tau = f^{\nu_1}_\tau \nu_1$-almost everywhere. One can also prove that for $\mu = \exp |\nu|$, $\nu \in M(G)$, that $f^\mu_\tau(x+y) = f^\mu_\tau(x) f^\mu_\tau(y)$ for $(x,y) \in G \times G$, $\nu \times \nu$ - almost everywhere.

Now to each $\tau \in \Delta_G$ we associate the R-homomorphism E_τ defined by $E_\tau \lambda = f^\mu_\tau \lambda$ (where $\lambda \in M(G)$,
and $\mu = \exp |\lambda|$.

Conversely, if E is an R-homomorphism, define $\tau \in \Delta_G$ by $\hat{\nu}(\tau) = (E\mu)^\wedge(1)$, $(\mu \in M(G))$, then it can be shown that $E = E_\tau$ (see [2, Chapter 1]. Now we give Δ_G the structure of a semigroup so that for $\sigma, \tau \in \Delta_G$, $\sigma \times \tau$ is described by the generalized character $f^\mu_\sigma f^\mu_\tau$; or equivalently, that $E_{\sigma \times \tau} = E_\sigma E_\tau$.

Further it can be shown that multiplication (\times) is separately continuous on Δ_G, so Δ_G becomes a commutative compact semitopological semigroup with identity 1, (for a general reference see [1]). The R-projections correspond to idempotents in Δ_G. Note that \hat{G} is embedded homeomorphically into Δ_G, in fact, as a subgroup, since for $\gamma_1, \gamma_2 \in \hat{G}$ we have $\gamma_1 \times \gamma_2 = \gamma_1 \gamma_2$; the generalized character f^μ_γ for γ is exactly γ (as a function on G).

The space that will hold our interest is the closure of \hat{G}, $c\ell \hat{G}$, a compact subsemigroup of Δ_G. For B a set of symmetric maximal ideals of Δ_G, \overline{B} consists of all $\tau \in \Delta_G$ for which $|\hat{\nu}(\tau)| \leq \sup\{|\hat{\nu}(\pi)| : \pi \in B\}$; for if the inequality holds, τ can be extended to a multiplicatively linear functional on $C(\overline{B})$ (since $M(G)^\wedge$ \overline{B} is sup-norm dense in $C(\overline{B})$ by the Stone-Weierstrass theorem), and so $\tau \in \overline{B}$. Thus for $\tau \in \Delta_G$, $\tau \in c\ell \hat{G}$ if and only if $|\nu(\tau)| \leq ||\hat{\nu}||_\infty$, for all $\mu \in M(G)$. An equivalent formulation is that $||(E_\tau \mu)^\wedge||_\infty \leq ||\hat{\mu}||_\infty$, $\mu \in M(G)$; and to see this, observe that $(E_\tau \mu)^\wedge(\gamma) = \int_\gamma f^\lambda_\tau d\mu = \hat{\nu}(\gamma \times \tau)$, for $\gamma \in \hat{G}$, $\mu \in M(G)$, $\lambda = \exp |\mu|$. Clearly $\sup\{|\hat{\nu}(\sigma) : \sigma \in c\ell \hat{G}\} = ||\hat{\nu}||_\infty$ and $\gamma \times \tau \in c\ell \hat{G}$ for all.
\(\gamma \in \hat{G} \) if and only if \(\tau \in c\ell \hat{G} \).

Observe that any Raikov projection is an R-projection. However, Yu. Šreider [8] has constructed an R-projection which is not a Raikov projection. In our paper [3] we proved the following:

THEOREM 4. Let \(\phi : H \to G \) be a monomorphism, and let \(P \) be the Raikov projection induced by \(\phi \). Then
\[
|| (P \mu) \hat{\gamma} ||_\infty \leq || \hat{\mu} ||_\infty.
\]
Thus \(P = E_\varepsilon \), for \(\varepsilon \in c\ell \hat{G} \).

We will describe how Theorem 4 gives the existence of LCA subgroups of \(c\ell \hat{G} \), and then characterize the LCA subgroups of \(c\ell \hat{G} \) which arise this way.

For further illustrations of the theory of R-projections we give the following:

PROPOSITION 5. If \(P \) is an R-projection and \(PL^1(G) \neq \{0\} \), then \(P = I \).

Proof. Write \(P = E_\varepsilon \), \(\varepsilon \) an idempotent in \(\Delta_G \).

Then for any \(\mu \in M(G) \), \((P \mu) \hat{\gamma} = \hat{\mu}(\gamma \times \varepsilon) \), but if \(\mu \in L^1(G) \), then \(\hat{\mu} = 0 \) off \(\hat{G} \). (Note that \(\hat{G} \) is the spectrum of \(L^1(G) \); see [7, p. 7].) Hence if \(PL^1(G) \neq \{0\} \), there exists \(\gamma_1, \gamma_2 \in \hat{G} \) such that
\[
\gamma_1 \times \varepsilon = \gamma_2,
\]
but then \(\varepsilon = \gamma_1 \gamma_2 \in \hat{G} \), so \(\varepsilon = 1 \).

Recall from Proposition 2 that if \(P \) is an R-projection then \(P \) is the identity on \(M_d(G) \).

EXAMPLE. There exists an LCA group \(G \), and a bounded algebraic projection \(P \) on \(M(G) \), such that \(PL^1(G) = \{0\} \), \(P \) is the identity on \(M_d(G) \),
\[
|| (P \mu) \hat{\gamma} ||_\infty \leq || \hat{\mu} ||_\infty,
\]
all \(\mu \in M(G) \), but \(P \) is not an R-projection.

Proof. Let \(G \) be an LCA group having subgroups \(H \) and \(K \neq \{0\} \) such that \(H \) has its own LCA
topology, and K is compact, $K \subseteq H$ and such that
the injection maps $K \to H \to G$ are continuous, and not
open. Let P_K be the Raikov projection $M(G) \to M(G_K)$
induced by $K \to G$, and let P_H be the Raikov projec-
tion $M(G) \to M(G_H)$ induced by $H \to G$. Let
$T: M(G) \to M(G)$ be defined by

$$T\mu = (P_H \mu) * m_K + (\delta - m_K) * P_K \mu, \text{ for } \mu \in M(G),$$

where m_K is the normalized Haar measure on K. A
direct computation shows that T is a projection on $M(G)$ (note that $P_H m_K = P_K m_K = m_K$).
The Fourier-Stieltjes transform of $T\mu$ is given
by

$$(T\mu)^\wedge(\gamma) = \begin{cases} (P_H \mu)^\wedge(\gamma), \gamma \in K^\perp \\ (P_K \mu)^\wedge(\gamma), \gamma \notin K^\perp \end{cases}$$

(where K^\perp is the annihilator of K in \hat{G}). Thus
$\| (T\mu)^\wedge \|_\infty \leq \| \hat{\mu} \|_\infty$, and T is an algebraic projec-
tion, which is the identity on $M_d(G)$ and
$TL^1(G) = \{0\}$. To show that T is not on R-projection
it suffices to show $T(\gamma \mu) \neq \gamma T\mu$, for some $\gamma \in \hat{G},$
$\mu \in M(G)$, (since R-projections commute with multiplica-
tion by bounded continuous functions). Let $\gamma \notin K^\perp,$
and let $\mu \in L^1(G_H)$ such that $\hat{\mu}(1) \neq 0$, then
$(T(\gamma \mu))^\wedge(\gamma) = (P_K (\gamma \mu))^\wedge(\gamma) = 0$ but $(\gamma T\mu)^\wedge(\gamma) = (T\mu)^\wedge(1) = (P_H \mu)^\wedge(1) = \hat{\mu}(1) \neq 0$. \hfill \Box

Definition 5. Let ε be an idempotent in $c^0\hat{G}$. Then the maximal subgroup of $c^0\hat{G}$ containing ε, denoted by $H(\varepsilon)$, is the set $\{ \sigma \in c^0\hat{G}: \sigma \times \varepsilon = \sigma,$ and there exists $\tau \in c^0\hat{G}$ such that $\sigma \times \tau = \varepsilon \}$. It can be shown that $\sigma \in H(\varepsilon)$ implies $|f^\mu_\sigma| = f^\mu_\varepsilon$, for
all \(\mu = \exp |\lambda| \), \(\lambda \in M(G) \); and for \(\{ \sigma_{\alpha} \} \) a net in \(H(\varepsilon) \), \(\sigma_{\alpha} \rightarrow \sigma \in H(\varepsilon) \) (in the \(\Lambda^G \) topology) if and only if \(\int_\Gamma |f_{\sigma_{\alpha}}^{\mu} - f_{\sigma}^{\mu}| d\mu = 0 \) for all \(\mu = \exp |\lambda| \), \(\lambda \in M(G) \). Thus \(H(\varepsilon) \) has jointly continuous multiplication, and is thus a topological group.

DEFINITION 6. For \(\varepsilon \) an idempotent in \(\mathcal{c}_{\mathcal{L}} \hat{G} \), let \(\rho_{\varepsilon} \) be the continuous map \(\gamma \mapsto \gamma \times \varepsilon \) for \(\gamma \in \hat{G} \).

PROPOSITION 6. For \(\varepsilon \) an idempotent in \(\mathcal{c}_{\mathcal{L}} G \), \(\rho_{\varepsilon} \) is a continuous monomorphism of \(\hat{G} \) with dense range in \(H(\varepsilon) \). Further \(\mathcal{c}_{\mathcal{L}} H(\varepsilon) = \varepsilon \times \mathcal{c}_{\mathcal{L}} \hat{G} = \{ \sigma \in \mathcal{c}_{\mathcal{L}} \hat{G} : \sigma \times \varepsilon = \sigma \} \).

Proof. Since \(\varepsilon \) is an idempotent, \(\rho_{\varepsilon} \) is a continuous homomorphism. Now suppose for some \(\gamma \in \hat{G} \) that \(\varepsilon \times \gamma = \varepsilon \), then for each \(x \in G \), \((\delta_x^{\varepsilon})^{\gamma}(\varepsilon \times \gamma) = (E_x^{\varepsilon})(\gamma) = (\delta_x^{\varepsilon})(\gamma) = \gamma(x) \) and \((\delta_x^{\varepsilon})(\varepsilon \times \gamma) = (\delta_x^{\varepsilon})(\varepsilon) = 1 \); hence \(\gamma = 1 \) and \(\rho_{\varepsilon} \) is a monomorphism. Finally \(\varepsilon \times \hat{G} \subset H(\varepsilon) \subset \varepsilon \times \mathcal{c}_{\mathcal{L}} G \), and \(\mathcal{c}_{\mathcal{L}} (\varepsilon \times \hat{G}) = \varepsilon \times \mathcal{c}_{\mathcal{L}} \hat{G} \).

PROPOSITION 7. Let \(\varepsilon \) be an idempotent in \(\mathcal{c}_{\mathcal{L}} \hat{G} \), then there exists a morphism \(j : H(\varepsilon) \rightarrow \beta \hat{G} \), the Bohr compactification of \(\hat{G} \), which is identified with \((G_\delta^\hat{G})^\wedge \), \(G_\delta \) is \(G \) with the discrete topology. Further \(j \circ \rho_{\varepsilon} = 1 \), the canonical injection of \(\hat{G} \) into \(\beta \hat{G} \); so \(j \) has dense range.

Proof. For each \(\sigma \in H(\varepsilon) \), define a character on \(G \) (hence an element of \(\beta \hat{G} \)) by \(j_\sigma(x) = (\delta_x^{\varepsilon})(\sigma) \), \(x \in G \); \(j_\sigma \) is a character by the argument of Proposition 2). Further if a net \(\{ \sigma_{\alpha} \} \subset H(\varepsilon) \) converges to \(\sigma \in H(\varepsilon) \), then for each \(x \), \(j_{\sigma_{\alpha}}(x) \rightarrow j_\sigma(x) \),
since \(j_{\sigma^\alpha}(x) = (\delta_x)^{\gamma}(\sigma^\alpha) \cdot (\delta_x)^{\gamma}(\sigma) \). Let \(\gamma \in \hat{G} \), \(x \in G \), then
\[j_{\rho^\gamma}\varepsilon(x) = (\delta_x)^{\gamma}(\gamma \times \varepsilon) = (E_{\delta_x}^\gamma)^{\gamma}(\gamma) = (\delta_x)^{\gamma}(\gamma) = \gamma(x). \]

DEFINITION 7. Let \(\varepsilon \) be an idempotent in \(\mathcal{C}\hat{\mathcal{G}} \), then we say \(L \) is a good group containing \(\varepsilon \) if \(L \) is a locally compact (in the \(\Delta_G \)-topology) subgroup of \(H(\varepsilon) \) and \(L \supset \rho^\varepsilon \hat{G} \).

We will show that the good groups arise exactly as the dual groups of the \(G_H \)'s, the abstract group \(G \) furnished with LCA topologies so that \(\text{id}: G_H \to G \) is continuous. Further there is at most one good group containing an idempotent.

PROPOSITION 8. Let \(\varepsilon \) be an idempotent in \(\mathcal{C}\hat{\mathcal{G}} \) and let \(L \) be a good group containing \(\varepsilon \), then \(\hat{\rho}_\varepsilon: \hat{L} \to \hat{G} \) is a monomorphism onto \(G \).

Proof. Since \(\rho^\varepsilon : \hat{G} \to L \) has dense range, we see that \(\hat{\rho}_\varepsilon \) is a monomorphism. Consider the map \(j \) defined in Proposition 7 restricted to \(L \). Then \(j \circ \rho^\varepsilon = i \), where \(i: \hat{G} \to \mathcal{B}\hat{G} \). Passing to the duals, we obtain \(\hat{i} = \hat{\rho}_\varepsilon \circ \hat{j} \), and \(\hat{i}: \hat{G}_d \to G \). Hence \(\hat{\rho}_\varepsilon \) is onto. \(\square \)

For notational convenience put \(\phi = \hat{\rho}_\varepsilon^* \). Applying Proposition 1 to the above situation we obtain that \(\phi \) is an isometric isomorphism of \(M(\hat{L}) \) onto \(M(G^L_\varepsilon) \). We now show that the Raikov projection induced by \(\hat{\rho}_\varepsilon \) is actually \(E_\varepsilon \).

THEOREM 9. Let \(\varepsilon \) be an idempotent in \(\mathcal{C}\hat{\mathcal{G}} \), and let \(L \) be a good group containing \(\varepsilon \). Then \(E_\varepsilon \) is the Raikov projection induced by \(\hat{\rho}_\varepsilon \), and \(\hat{\rho}_\varepsilon \) is isomorphic under \(\hat{\rho}_\varepsilon \) to \(G^L_\varepsilon \), \(G \) with a stronger
LCA topology.

Proof. The action of \(\phi \) can be described as follows: for \(\mu \in M(\hat{L}), \gamma \in \hat{G} \), \((\phi \mu)(\gamma) = \hat{\mu}(\gamma \times \varepsilon) \). First we show that \(\phi M(\hat{L}) \subseteq E_\varepsilon M(G) \). Since \(\varepsilon \in \text{c} \hat{G} \), there exists a net \(\{ \gamma_\alpha \} \subseteq \hat{G} \) such that \(\gamma_\alpha \to \varepsilon \). Let \(\mu \in M(\hat{L}), \gamma \in \hat{G} \) then

\[
(\phi \mu)(\gamma_\alpha) = \hat{\mu}(\gamma_\alpha \times \gamma \times \varepsilon) = \hat{\mu}(\varepsilon \times \gamma \times \varepsilon) = (\phi \mu)(\gamma)
\]

since \(\hat{\mu} \) is continuous on \(L \). But

\[
(\phi \mu)(\varepsilon \times \gamma) = (\phi \mu)(\varepsilon \times \gamma)
\]

hence \((\phi \mu)(\varepsilon \times \gamma) = (\phi \mu)(\gamma) \), and so \(E_\varepsilon \phi \mu = \phi \mu \). To show that

\[
E_\varepsilon M(G) \subseteq \phi M(\hat{L}), \text{ let } \mu \text{ be a positive measure in } E_\varepsilon M(G).
\]

To see that these positive measures span

\[
E_\varepsilon M(G), \text{ observe that } E_\varepsilon \mu = \int_\varepsilon^\lambda \mu, \text{ for } \mu \in M(G),
\]

\(\lambda = \exp |\mu|, \text{ and } \int_\varepsilon^\lambda > 0; \text{ hence } \mu > 0 \) implies

\[
E_\varepsilon \mu > 0.
\]

Then the function \(\hat{\mu}|L \) is positive definite on the dense subgroup \(\rho_\varepsilon \hat{G} \) of \(L \) and is continuous and bounded on \(L \); note for \(\gamma \in \hat{G}, \hat{\mu}(\gamma \times \varepsilon) = (E_\varepsilon \mu)(\gamma) = \hat{\mu}(\gamma) \). Hence \(\hat{\mu}|L \) is positive definite on \(L \), (suppose \(f \) is a continuous function on a topological group \(X \) and is positive definite on a dense subgroup \(Y \); then for \(n=1,2,..., c_i \in \mathbb{C} \), \(x_i \in X \) for \(i=1,...,n \) the expression

\[
\sum_{i,j} c_i c_j \int f(x_i^{-1}x_j)
\]

can be approximated by expressions of the form

\[
\sum_{i,j} c_i c_j \int f(y_j^{-1}y_i), \text{ for each } i=1,...,n \text{ respectively,}
\]

thus \(f \) is positive definite on \(X \), and by Bochner's theorem (see [7, p. 19]) there exists

\[
\nu \in M(\hat{L}) \text{ such that } \hat{\nu}(\varepsilon \times \gamma) = \hat{\nu}(\varepsilon \times \gamma) \text{ for each } \gamma \in \hat{G} .
\]

Clearly \(\mu = \phi \nu \).
Let P be the Raikov projection induced by $\hat{\rho}_\varepsilon$, but then $P \ M(G) = M(G^\wedge_L) = \phi M(L) = E_\varepsilon M(G)$. Since P and E_ε commute, this shows that $P = E_\varepsilon$. □

Conversely, let G_H be the abstract group G with an LCA topology stronger than that of G. Let $P = E_\varepsilon$ be the Raikov projection induced by id: $G_H \rightarrow G$, then ε is an idempotent in $c\ell \hat{G}$. (see Theorem 4). Now consider \hat{G} as a subgroup of \hat{G}_H (both groups are groups of characters of the abstract group G), then the morphism $\rho_\varepsilon : \hat{G} \rightarrow H(\varepsilon)$ extends to \hat{G}_H in the following way: let $\chi \in \hat{G}_H$, then put $\rho_\varepsilon \chi = \sigma$, where σ is defined by $f^\mu_\sigma = \chi f^\mu_\varepsilon$, for $\mu = \exp |\nu|$, $\nu \in M(G)$.

THEOREM 10. Under the preceding hypotheses, $\rho_\varepsilon \hat{G}_H$ is a good group containing ε. Further $\rho_\varepsilon \hat{G}_H = H(\varepsilon)$, and $H(\varepsilon)$ is the maximal subgroup of Δ_G containing ε.

Proof. The topology on \hat{G}_H is induced by the Fourier-Stieltjes transforms of the elements of $M(G_H)$. The Δ_G-topology on $\rho_\varepsilon \hat{G}_H$ is induced by the functions $\hat{\mu}, \mu \in M(G)$. But for $\mu \in M(G), \chi \in \hat{G}_H$, we have $\hat{\mu}(\rho_\varepsilon \chi) = \hat{\mu}(\varepsilon \times \rho_\varepsilon \chi) = (E_\varepsilon \mu)^\wedge(\rho_\varepsilon \chi) = (E_\varepsilon \mu)^\wedge(\chi)$, where the last term is the G_H-Fourier-Stieltjes transform of $E_\varepsilon \mu \in M(G_H)$. Hence $\rho_\varepsilon \hat{G}_H$ in the Δ_G-topology is homeomorphic to \hat{G}_H, so $\rho_\varepsilon \hat{G}_H$ is LCA, and contains $\rho_\varepsilon \hat{G}$. Thus $\rho_\varepsilon \hat{G}_H$ is a good group.

The topologies on the maximal ideal space Δ_{G_H} of $M(G_H)$ and on $\varepsilon \times \Delta_G$ are both induced by the set $\{\hat{\mu}: \mu \in M(G_H) = E_\varepsilon M(G)\}$. It follows that Δ_{G_H}
is homeomorphic to $\varepsilon \times \Delta_G$. Indeed, a generalized character argument shows that Δ_{G_H} is isomorphic to $\varepsilon \times \Delta_G$ as a semitopological semigroup (see the remark immediately preceding Theorem 10).

The annihilator of $L^1(G_H)$ in $\varepsilon \times \Delta_G$ is $(\varepsilon \times \Delta_G) \setminus \rho \hat{G}_H$. Now let $\sigma \in \Delta_G$ with $\sigma \times \varepsilon = \sigma$ (that is, $\sigma \in \varepsilon \times \Delta_G$), and suppose there exists $\tau \in \Delta_G$ such that $\sigma \times \tau = \varepsilon$. We now show that $\sigma \in \rho \hat{G}_H$. For $\mu = \exp|\lambda|$, $\lambda \in M(G)$, we have $|f_{\sigma}^\mu| = f_{\varepsilon}^\mu$. In particular, let $\lambda \in L^1(G_H)$, $\lambda \not= 0$, and $\mu = \exp|\lambda|$. Then $f_{\varepsilon}^\mu = 1$ ($|\mu|$ almost everywhere), so $|f_{\sigma}^\mu| = 1$ ($|\mu|$ almost everywhere). Thus $f_{\sigma}^\mu \in L^1(\lambda)$, and there exists a bounded continuous function g on G_H such that $\int_{G_H} f_{\sigma}^\mu gd\lambda \neq 0$. But $g_{\lambda} \in L^1(G_H)$ and so $\sigma \in \rho \hat{G}_H$. \square

Corollary 11. Let ε be an idempotent in \mathcal{G}, and let L be a good group containing ε. Then $L = H(\varepsilon)$, and $H(\varepsilon)$ is the maximal subgroup of Δ_G containing ε. Hence $H(\varepsilon)$ is the unique good group containing ε.

Proof. Apply Theorem 10 to G_L. \square

Taylor [9] showed that the maximal subgroup of Δ_G containing 1 is \hat{G}. In a future paper the authors will present an example of an LCA group G such that \mathcal{G} contains an idempotent ε with $H(\varepsilon)$ not locally compact.
REFERENCES

University of Virginia
Charlottesville, Virginia 22903

Received March 22, 1971.