TOPICS
IN
HARMONIC ANALYSIS

Charles F. Dunkl & Donald E. Ramirez
Department of Mathematics • University of Virginia

APPLETON-CENTURY-CROFTS
EDUCATIONAL DIVISION
MEREDITH CORPORATION
PREFACE

Our purpose in writing this book was to supplement the 1962 book of Rudin, *Fourier Analysis on Groups*, for our harmonic analysis course and seminar at the University of Virginia. The first part (Chapters 1–6) is about locally compact abelian groups and it includes a complete discussion of the maximal ideal space of $M(G)$ and the new proof of the Cohen idempotent theorem by Itô and Amemiya. The second part (Chapters 7–10) is an invitation to harmonic analysis on compact non-abelian groups. It contains a discussion of the algebra $A(G)$ (the non-abelian analogue of $L^1(G)$), spherical harmonics, the Poisson integral, and analytic functions in the n-complex ball. Appendix A contains Bredon’s proof of the existence and uniqueness of Haar measure. Appendix B discusses integration algebras and the Hausdorff-Young-Kunze theorem. Appendix C describes some current research on compact groups.

Our topics clearly do not include all the significant new results since 1962; for example, the work of Varopoulos on $M(G)$ has not been included because of space and time limitations.

We use \square to indicate the end of a proof. The symbol \subset denotes containment whereas \subsetneq denotes proper containment. The paragraphs which compose the text are numbered consecutively. For example, Theorem 7.2.8 is the eighth paragraph in Section 2 of Chapter 7. In Chapter 7 this theorem is referred to as Theorem 2.8. To refer to a reference book we simply invoke a symbol; for example, $[R]$ denotes Rudin’s book, *Fourier*
PREFACE

Analysis on Groups. To cite a particular paper of Rudin we would write, for example, Rudin [4]. We caution the reader to be aware that the definition of a Fourier-Stieltjes transform of a measure on a locally compact abelian group involves no inverse whereas the inverse is employed in the compact nonabelian definition.

Since we use a great amount of notation we have provided an index of special symbols which refers the reader to the respective definitions. The historical notes scattered throughout the book give the basic references for the various theorems. Our references are not meant to be a complete listing of all works in the field.

We wish to thank Miss Blanche Bailey for her assistance in preparing the manuscript.

The authors have been partially supported by NSF contract number GP-8981.

C.F.D.
D.E.R.
TABLE OF CONTENTS

Preface

<table>
<thead>
<tr>
<th>Chapter 1: THE MAXIMAL IDEAL SPACE OF M(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. The operator algebra $M(G)^*$</td>
</tr>
<tr>
<td>3. The structure semigroup</td>
</tr>
<tr>
<td>4. Generalized characters</td>
</tr>
<tr>
<td>5. Historical notes</td>
</tr>
</tbody>
</table>

<p>| Chapter 2: THE SHILOV BOUNDARY AND THE SYMMETRIC |</p>
<table>
<thead>
<tr>
<th>MAXIMAL IDEALS IN M(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Preparatory results</td>
</tr>
<tr>
<td>3. Particular cases</td>
</tr>
<tr>
<td>4. Main theorem</td>
</tr>
<tr>
<td>5. Historical notes</td>
</tr>
</tbody>
</table>

<p>| Chapter 3: UNIFORM APPROXIMATION BY FOURIER- |</p>
<table>
<thead>
<tr>
<th>STIELTJES TRANSFORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. B^*-subalgebras of $M(G)$</td>
</tr>
<tr>
<td>3. Pairings with $M(G)$</td>
</tr>
<tr>
<td>4. Historical notes</td>
</tr>
</tbody>
</table>
Chapter 4: WEAKLY ALMOST PERIODIC FUNCTIONS

1. Introduction 39
2. Basic facts 40
3. Relationship to Fourier-Stieltjes transforms 42
4. Historical notes 46

Chapter 5: SIDON SETS

1. Introduction 47
2. Other equivalences 48
3. An example 51
4. Sufficient conditions 52
5. Uniformly approximable Sidon sets 59
6. Historical notes 62

Chapter 6: IDEMPOTENT MEASURES

1. Introduction 63
2. The Cohen idempotent theorem 64
3. Norms of idempotent measures 67
4. Remarks 70

Chapter 7: INTRODUCTION TO COMPACT GROUPS

1. Introduction 71
2. Theorems on unitary representations 73
3. Harmonic analysis of \(L^2(G) \) 76
4. Representations on a Banach space 79
5. Historical notes 81

Chapter 8: BANACH SPACES ON THE DUAL OF A COMPACT GROUP

1. Introduction 83
2. Norms on finite dimensional linear operators 83
3. Generalized sequence spaces 86
4. The Fourier transform 89
5. The maximal ideal space of \(A(G) \) 94
6. Functions that operate in \(A(G) \) 96
7. Remarks 98
Chapter 9: HOMOGENEOUS SPACES

1. Introduction 99
2. Basic definitions 99
3. Operators that commute with translations 101
4. Spherical functions 103
5. The spaces $A_p(G)$ and $A_{H^p}(G)$ 106
6. The special orthogonal group and the sphere 107
7. Historical notes 115

Chapter 10: ANALYTIC FUNCTIONS ON THE BALL

1. Introduction 117
2. Analytic functions and the unitary group 117
3. Subharmonic functions 121
4. H^p-theory 124

Appendix A: THE HAAR INTEGRAL 129

Appendix B: INTEGRATION ALGEBRAS 139

Appendix C: REMARKS ON RECENT WORK 149

Bibliography 151
Index of special symbols 157
Author index 159
Subject index 161
BIBLIOGRAPHY

Reference Books

BIBLIOGRAPHY

Research Publications

Amemiya, I. and Itô, T.
Banach, S.
Bredon, G.
Buck, R. C.
Bungart, L.
Cartan, E.
Chaney, R.
Cohen, P.
De Leeuw, K.
De Leeuw, K. and Glicksberg, I.
Drury, S.
BIBLIOGRAPHY

Dunkl, C.
Dunkl, C. and Ramirez, D.
Eberlein, W.
Edwards, R.
Edwards, R. and Hewitt, E.
Eymard, P.
Figà-Talamanca, A. and Rider, D.
Garding, L. and Hörmander, L.
Glicksberg, I. (see De Leeuw)
Godement, R.
Grothendieck, A.
Haar, A.
Halmos, P. and Vaughan, H.
Helgason, S.
BIBLIOGRAPHY

Helson, H.
Helson, H., Kahane, J.-P., Katznelson, Y., and Rudin W.
Hewitt, E. (see Edwarde).
Hewitt, E. and Zuckerman, H.
Hörmander, L. (see Gårding)
Ito, T. (see Amemiya)
Johnson, B.
Kahane, J.-P. (see Helson)
Katznelson, Y. (see Helson)
Kcogh, F.
Kessler, I.
Krein, M.
Kunze, R.
Mayer, R.
BIBLIOGRAPHY

Miller, R.

Peter, F. and Weyl, H.

Pym, J.

Ramirez, D. (see Dunkl)

Rennison, J.

Rider, D. (see Friga-Talamanca)

Rudin, W. (see Helson)

Saeki, S.

Saitô, K.

Segal, I.

H. Zuckerman, (see Hewitt)