TRANSLATION IN MEASURE ALGEBRAS AND THE CORRESPONDENCE TO FOURIER TRANSFORMS VANISHING AT INFINITY

Charles F. Dunkl and Donald E. Ramirez

Let G denote a locally compact (not necessarily abelian) group and $M(G)$ the collection of finite regular Borel measures on G. The set $M(G)$ is a semisimple Banach algebra with identity under convolution *. It can be identified with the dual space of $C_0(G)$, the space of continuous complex-valued functions on G that vanish at infinity, with the sup-norm. The group G has a left-invariant regular Borel measure $dm(x)$ that is unique up to a constant and is called the left Haar measure of G. Let $C_b(G)$ denote the space of bounded continuous functions on G. For each $x \in G$, we define on $C_b(G)$ the left-translation operator by the relation

$$L(x)f(y) = f(x^{-1}y) \quad (f \in C_b(G)).$$

We say that $f \in C_b(G)$ is right uniformly continuous if $L(x_\alpha)f \to L(x)f$ uniformly, whenever $x_\alpha \to x$. Let $C_b^r(G)$ denote the subspace of $C_b(G)$ of right uniformly continuous functions. For $\mu \in M(G)$, define $L(x)\mu \in M(G)$ by the condition

$$\int_G f(t) dL(x)\mu(t) = \int_G L(x^{-1})f(t) d\mu(t),$$

where $f \in C_0(G)$. We wish to study for which $\mu \in M(G)$ the map $x \mapsto L(x)\mu$ is continuous from G into $M(G)$, where $M(G)$ will be equipped with an $L(x)$-invariant metric topology. In particular, we shall characterize $M_0(G)$, the algebra of measures whose Fourier transform vanishes at infinity.

Let $A \subset C_b^r(G)$ be a linear subspace with sufficiently many elements to separate the points of $M(G)$; in other words, if $\mu \in M(G)$ and if

$$\int_G f(t) d\mu(t) = 0$$

for all $f \in A$, then $\mu = 0$. We are then able to pair A and $M(G)$ by the relation

$$\langle f, \mu \rangle = \int_G f(t) d\mu(t) \quad (f \in A; \ \mu \in M(G)).$$

Let $\sigma(A, M(G))$ denote the weak topology on A induced by this pairing. Suppose A can be written as $\bigcup_{k=1}^\infty A_k$, where each A_k is a subset of A that is $L(x)$-invariant for all $x \in G$ and where each A_k is $\sigma(A, M(G))$-bounded. Note that A_k is

* Received December 24, 1969.
This research was supported in part by NSF contract number GP 8981.

\(\sigma(\mathcal{A}, \mathcal{M}(G)) \)-bounded if and only if \(A_k \) is bounded in sup-norm. We let \(\mathcal{T}(A_k) \) denote the topology on \(\mathcal{M}(G) \) of uniform convergence on the sets \(A_k \). Note that \(\mathcal{T}(A_k) \) gives an \(L(\mathcal{X}) \)-invariant metric topology on \(\mathcal{M}(G) \). For \(k \geq 1 \), let

\[
\tau_k(\mu) = \sup \left\{ \left| \left< f, \mu \right> \right| : f \in A_k \right\}.
\]

Then \(\tau_k \) is an \(L(\mathcal{X}) \)-invariant seminorm on \(\mathcal{M}(G) \).

Definition. For \(\mu \in \mathcal{M}(G) \), we say that \(\mu \) has separable orbit in \((\mathcal{M}(G), \mathcal{T}(A_k)) \) if there exists a sequence \(\{x_n\}_{n=1}^{\infty} \subset \mathcal{G} \) such that for each \(x \in \mathcal{G}, k \geq 1, \) and \(\varepsilon > 0 \), there exists an \(x_n \) such that \(\tau_k(\mathcal{L}(x)\mu - \mathcal{L}(x_n)\mu) < \varepsilon \).

PROPOSITION 1. Let \(\mu \in \mathcal{M}(G) \) have separable orbit in \((\mathcal{M}(G), \mathcal{T}(A_k)) \). Then \(s \mapsto \mathcal{L}(s)\mu \) is continuous from \(\mathcal{G} \) to \((\mathcal{M}(G), \mathcal{T}(A_k)) \).

Proof. Let \(s_\alpha \xrightarrow{\alpha} s \). Choose \(k \geq 1 \) and \(\varepsilon > 0 \). We need to show that there exists \(\alpha_0 \) such that for \(\alpha \geq \alpha_0 \), we have the inequality \(\tau_k(\mathcal{L}(s_\alpha)\mu - \mathcal{L}(s)\mu) < \varepsilon \). Note that for \(f \in C_{\mathcal{T}}(\mathcal{G}), y \beta, y \beta^{-1} \), \(\mathcal{L}(y)\mu \) uniformly as \(y \beta, y \beta^{-1} \) (and hence as \(y \beta^{-1} \)). Thus

\[
\left< f, \mathcal{L}(y)\mu \right> = \left< \mathcal{L}(y^{-1})f, \mu \right> + \left< \mathcal{L}(y^{-1})f, \mu \right> = \left< f, \mathcal{L}(y)\mu \right>.
\]

Let \(S(n) = \{ y \in \mathcal{G} : \tau_k(\mathcal{L}(y)\mu - \mathcal{L}(x_n)\mu) \leq \varepsilon/3 \} \). We wish to show that \(S(n) \) is closed. Let \(y_\beta \in S(n) \) be such that \(y_\beta \beta, y \). Thus

\[
\tau_k(\mathcal{L}(y)\mu - \mathcal{L}(x_n)\mu) = \sup \left\{ \lim_{\beta} \left| \left< f, \mathcal{L}(y)\mu - \mathcal{L}(x_n)\mu \right> \right| : f \in A_k \right\} \leq \varepsilon/3.
\]

Hence \(S(n) \) is closed.

By hypothesis, \(\mathcal{G} = \bigcup_{n=1}^{\infty} S(n) \). By the Baire category theorem for locally compact groups, there exists \(n_0 \) such that \(S(n_0) \) has an interior. Thus there exists an open set \(U \) about \(s \) such that \(t_0 s^{-1} U \subset S(n_0) \) for some \(t_0 \in S(n_0) \). Let \(\alpha_0 \) be such that \(s_\alpha \in U \) for \(\alpha \geq \alpha_0 \). We now show that for \(\alpha \geq \alpha_0 \), the inequality

\[
\tau_k(\mathcal{L}(s_\alpha)\mu - \mathcal{L}(s)\mu) < \varepsilon
\]

holds. For \(\alpha \geq \alpha_0 \), we have that

\[
\tau_k(\mathcal{L}(s_\alpha)\mu - \mathcal{L}(s)\mu) = \tau_k(\mathcal{L}(t_0 s^{-1})\mathcal{L}(s_\alpha)\mu - \mathcal{L}(t_0 s^{-1})\mathcal{L}(s)\mu)
\]

\[
\leq \tau_k(\mathcal{L}(t_0 s^{-1} s_\alpha)\mu - \mathcal{L}(x_n)\mu) + \tau_k(\mathcal{L}(x_n)\mu - \mathcal{L}(t_0)\mu)
\]

\[
\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon,
\]

since \(t_0, t_0 s^{-1} s_\alpha \in t_0 s^{-1} U \subset S(n_0) \).

PROPOSITION 2. Let \(G \) be \(\sigma \)-compact. If \(x \mapsto \mathcal{L}(x)\mu \) is continuous from \(\mathcal{G} \) to \((\mathcal{M}(G), \mathcal{T}(A_k)) \), then \(\mu \) has separable orbit in \((\mathcal{M}(G), \mathcal{T}(A_k)) \).

Proof. Note that \((\mathcal{M}(G), \mathcal{T}(A_k)) \) is a metric space. Let \(G = \bigcup_{n=1}^{\infty} K_n \), where \(K_n \) is compact. The image of \(K_n \) under \(x \mapsto \mathcal{L}(x)\mu \) is a compact metric space and hence is separable. Thus the image of \(G \) is separable.
If \(G \) is not \(\sigma \)-compact and \(M(G) \) has the measure norm topology, then no non-zero measure has a separable orbit.

We now show that \(\mu \in M(G) \) has the property that \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \mathcal{F}(A_k)) \) if and only if \(\mu \) is in the \(\mathcal{F}(A_k) \)-closure of \(L^1(G) \), denoted by \(L^1(\overline{G})^A \).

Theorem 3. Let \(\mu \in M(G) \) be such that \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \mathcal{F}(A_k)) \). Then \(\mu \in L^1(\overline{G})^A \).

Proof. Let \(\{f_\alpha\} \) be an approximate identity in \(L^1(G) \), indexed over a neighborhood of \(e \); in other words, support \(\{f_\alpha\} \subset \alpha \), \(f_\alpha \geq 0 \), and \(\|f_\alpha\|_1 = 1 \). Choose \(k_0 \geq 1 \) and \(\varepsilon > 0 \). It suffices to show that \(\tau_k(f_\alpha * \mu - \mu) \leq \varepsilon \) for \(\alpha \geq \alpha_0 \), for some \(\alpha_0 \). Pick \(U \) to be a symmetric neighborhood of \(e \) in \(G \) such that

\[
\tau_k(L(x)\mu - \mu) < \varepsilon
\]

for \(x \in U \). Choose \(\alpha_0 \) such that the inequality \(\alpha \geq \alpha_0 \) implies that support \(\{f_\alpha\} \subset U \). Now for \(\alpha \geq \alpha_0 \),

\[
\tau_k(f_\alpha * \mu - \mu) = \sup \left\{ \left| \left< \phi, f_\alpha * \mu - \mu \right> \right| : \phi \in A_k \right\}
= \sup \left\{ \left| \int \phi(x) f_\alpha(x) \mu(x) - \int \phi(y) d\mu(y) \right| : \phi \in A_k \right\}
= \sup \left\{ \left| \int \int \phi(x) d\mu(x)f_\alpha(x) - \int \phi(y) d\mu(y) \right| : \phi \in A_k \right\}
= \sup \left\{ \left| \int \phi(y) dL(x)\mu(y) - \int \phi(y) d\mu(y) \right| : \phi \in A_k \right\}
\leq \sup_{x \in U} \tau_k(L(x)\mu - \mu) \leq \varepsilon.
\]

Theorem 4. Let \(\mu \in L^1(\overline{G})^A \). Then \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \mathcal{F}(A_k)) \).

Proof. We note first that since \(A_k \) is \(\sigma(A, M(G)) \)-bounded and \(L(x) \)-invariant, \(A_k \) is a sup-norm bounded set in \(C^B(G) \); in fact, for all \(x \in G \), we have that

\[
\sup_{f \in A_k} \left| f(x) \right| = \sup_{f \in A_k} \left| \int L(x^{-1}) f(x) d\delta_e \right| = \sup_{f \in A_k} \left| \int f(x) d\delta_e \right| = M < \infty,
\]

where \(\delta_e \) is the unit mass at \(e \). Now \(x \mapsto L(x)\mu \) is continuous from \(G \) to \(M(G) \) in the measure norm, for \(\mu \in L^1(G) \). Thus, since \(A_k \) is a sup-norm bounded set, \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \mathcal{F}(A_k)) \) for \(\mu \in L^1(G) \). Choose \(\mu \in L^1(\overline{G})^A \), and let \(x_{\alpha} \overset{\alpha}{\to} x \). Let \(k \geq 1 \) and \(\varepsilon > 0 \). We need to find an \(\alpha_0 \) such that if \(\alpha_0 \leq \alpha \), then \(\tau_k(L(x_{\alpha})\mu - L(x)\mu) < \varepsilon \). First pick \(f \in L^1(G) \) such that \(\tau_k(f - \mu) < \varepsilon/3 \). Now choose \(\alpha_0 \) such that for \(\alpha \geq \alpha_0 \), \(\tau_k(L(x_{\alpha})f - L(x)f) < \varepsilon/3 \). Thus for \(\alpha \geq \alpha_0 \),
\[\tau_k(L(x,\alpha)\mu - L(x)\mu) \leq \tau_k(L(x,\alpha)\mu - L(x)\mu) + \tau_k(L(x,\alpha)f - L(x)f) + \tau_k(L(x)f - L(x)\mu) < \tau_k(\mu - f) + \frac{\varepsilon}{3} + \tau_k(f - \mu) < \varepsilon. \]

Remark. The two theorems above also hold if \(A \) is a space of bounded Borel functions, rather than a subspace of \(C^0_r(G) \).

For \(\mu \in M(G) \), let \(\| \mu \| \) denote the measure norm of \(\mu \), that is, the norm of \(\mu \) as a linear functional on \(C_0(G) \) with sup-norm \(\| f \|_\infty = \sup \{ |f(x)| : x \in G \} \). If we let \(A_k = \{ f \in C_0(G) : \| f \|_\infty < k \} \), then \(\mathcal{F}(A_k) \) is the measure norm topology. Thus we have the following corollaries.

Corollary 5. Let \(\mu \in M(G) \). If \(\mu \) has separable orbit in \((M(G), \| \cdot \|) \), then \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \| \cdot \|) \).

Suppose \(G \) is \(\sigma \)-compact. If \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \| \cdot \|) \), then \(\mu \) has separable orbit in \((M(G), \| \cdot \|) \).

Corollary 6. Let \(\mu \in M(G) \). The measure \(\mu \) is absolutely continuous if and only if \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \| \cdot \|) \).

Remarks. Propositions 1 and 2 are similar in spirit to a theorem of K. Shiga [8] in the compact case. Corollary 5 was obtained by R. Larsen [5] for the case where \(G \) is second countable and by K. W. Tam [9] in the general case. Corollary 6 was obtained by W. Rudin [7].

We now study \(M(G) \) under its sup-norm \(\| \cdot \|_\infty \). We shall give first the abelian case for motivation. We then treat the compact nonabelian case and finally the general case.

Let \(G \) be abelian, and let \(\hat{G} \) denote the character group of \(G \). For \(\mu \in M(G) \), define \(\hat{\mu}(\gamma) = \int_G \overline{\gamma(x)}d\mu(x) \), for \(\gamma \in \hat{G} \). Then \(\hat{\mu} \) is the Fourier transform of \(\mu \). For \(\mu \in M(G) \), let

\[\| \mu \|_\infty = \sup \{ |\hat{\mu}(\gamma)| : \gamma \in \hat{G} \} \]

Let \(M_0(G) = \{ \mu \in M(G) : \mu \in C_0(\hat{G}) \} \).

Corollary 7. Let \(G \) be abelian. The map \(x \mapsto L(x)\mu \) is continuous from \(G \) to \((M(G), \| \cdot \|_\infty) \) if and only if \(\mu \in M_0(G) \).

Proof. Let \(A_k = \{ f : f \in L^1(\hat{G}) \text{ with } \| f \|_1 < k \} \). Then \(\mathcal{F}(A_k) \) is the topology of \((M(G), \| \cdot \|_\infty) \).

Remark. Corollary 7 was obtained by R. Goldberg and A. Simon [3]. They used the following result: If \(U \) is a relatively compact neighborhood of \(0 \) in \(G \) (where \(G \) is abelian), there exists a compact subset \(K \) of \(\hat{G} \) such that for \(\gamma \in \hat{G} \setminus K \), there exists an \(x \in U \) with \(\gamma(x) \leq 0 \). To see this, let \(\sqrt{2} \leq \delta < \sqrt{3} \), and define \(U^0 = \{ \gamma \in \hat{G} : |\gamma(x) - 1| < \delta \text{ for all } x \in U \} \). Note that \(U^0 \) is relatively compact in \(\hat{G} \) (K. H. Hofmann and P. S. Mostert [4, p. 284] or Pontryagin [6, p. 237]). Let \(K \) be the closure of \(U^0 \) in \(\hat{G} \). We now prove the analogous result for the case where \(G \) is compact and nonabelian. This result is independent of the rest of this paper. We use the notation of Dunkl and Ramirez [1, Chapters 7 and 8], where proofs of unproved statements below may be found.
Let G be a compact, nonabelian group. We let \hat{G} denote the set of equivalence classes of continuous, unitary irreducible representations of G. For $\alpha \in \hat{G}$, let T_α be an element of α. Then T_α is a homomorphism of G into $U(n_\alpha)$, the group of unitary $n_\alpha \times n_\alpha$ matrices, where n_α is the dimension of α. We use $T_\alpha(x)_{ij}$ to denote the matrix entries of $T_\alpha(x)$ ($1 \leq i, j \leq n$) and $T_{\alpha ij}$ to denote the function $x \mapsto T_\alpha(x)_{ij}$. Clearly
\[
T_\alpha(xy)_{ij} = \sum_{k=1}^{n_\alpha} T_\alpha(x)_{ik} T_\alpha(y)_{kj} \quad \text{and} \quad T_\alpha(y^{-1})_{ij} = T_\alpha(y)_{ji}.
\]
Furthermore, $T_{\alpha ij} \in C(G)$, where $C(G)$ denotes the set of continuous functions on G. For $\alpha \in \hat{G}$, let
\[
\chi_\alpha(x) = \text{trace } (T_\alpha(x)) = \sum_{i=1}^{n_\alpha} T_\alpha(x)_{ii}.
\]
This trace χ_α is called the character of α, and it is independent of the choice of T_α in α. Let X be an n-dimensional, complex inner-product space. Let $B(X)$ denote the space of linear maps from X into X. We define the operator norm of $A \in B(X)$ by
\[
\|A\|_\infty = \sup \{ |A\xi| : \xi \in X, \|\xi\| \leq 1 \}.
\]
For the trace of A, we find that $\text{Tr } A = \sum_{i=1}^{n} (A\xi_i, \xi_i)$, where $\{\xi_i\}_{i=1}^{n}$ is some orthonormal basis for X and (\cdot, \cdot) denotes the inner product in X. Let $|A|$ denote $(A^*A)^{1/2}$. The operator norm of A is $\|A\|_\infty$, that is, $\max \{\lambda_i : 1 \leq i \leq n\}$, where the λ_i are the eigenvalues of $|A|$. For each $A \in B(X)$, we have the inequality $|\text{tr } A| \leq n\|A\|_\infty$.

PROPOSITION 8. Let G be a compact group. Suppose $0 < \delta < \sqrt{3}$, and let U be a neighborhood of e in G. Let $U^0 = \{ \alpha \in \hat{G} : \|T_\alpha(x) - I\|_\infty < \delta \text{ for all } x \in U \}$. Then U^0 is finite.

Proof. We show that U^0 is an equicontinuous set of representations of G. Choose $\varepsilon > 0$. Let K be a positive constant such that for $0 \leq \theta \leq 2\pi/\delta$, we have the inequality $|e^{i\theta} - 1| \leq K\delta$ (for example, let $K = 3\pi \sqrt{3}/2$). Define
\[
V_m = \{ x \in G : x, x^2, \ldots, x^m \in U \}.
\]
Clearly, V_m is a neighborhood of e in G. Pick m such that $K\delta/m < \varepsilon$. Then for $x_1, x_2 \in G$ with $x = x_1^{-1}x_2 \in V_m$, we have that
\[
\|T_\alpha(x_1) - T_\alpha(x_2)\|_\infty = \|I - T_\alpha(x_1^{-1}x_2)\|_\infty = \|I - T_\alpha(x)\|_\infty
\]
\[
= \sup \{|1 - e^{i\theta}j| : 1 \leq j \leq n_\alpha\} \quad (\alpha \in U^0),
\]
by diagonalizing $T_\alpha(x)$. Thus
\[
\|I - T_\alpha(x^r)\|_\infty = \sup \{|1 - e^{ir\theta}j| : 1 \leq j \leq n_\alpha\} < \delta
\]
for $1 \leq r \leq m$. Therefore
\[\| I - T_{\alpha}(x) \|_\infty = \sup \{ |1 - e^{i\theta_j}| : 1 \leq j \leq n_\alpha \} < K\delta / m < \varepsilon. \]

Thus \(U^0 \) is an equicontinuous set of representation of \(G \).

Let \(\chi_\alpha = \text{Tr} T_{\alpha} \). We claim that \(\{ \chi_\alpha / n_\alpha : \alpha \in U^0 \} \) is an equicontinuous, uniformly bounded set of functions. This is the case since

\[|\text{Tr} (I - T_{\alpha})| \leq n_\alpha \| I - T_{\alpha} \|_\infty. \]

Further \(\| \chi_\alpha / n_\alpha \|_\infty \leq 1 \), and hence \(\{ \chi_\alpha / n_\alpha : \alpha \in U^0 \} \) is relatively compact, by the Arzelà-Ascoli theorem. Since the \(\{ \chi_\alpha / n_\alpha \} \) are orthogonal in \(L^2(G) \), either \(U^0 \) is finite or \(\{ \chi_\alpha / n_\alpha : \alpha \in U^0 \} \) has 0 as a uniform cluster point. This latter condition cannot happen, since \(\chi_\alpha(e) / n_\alpha = 1 \).

Let \(G \) be as above (that is, compact and nonabelian). We shall give the analogue to Corollary 7. Let the set \(\phi = \{ \phi_\alpha : \alpha \in \hat{G} \}, \) where \(\phi_\alpha \in B(C^{n_\alpha}) \) be such that \(\sup \{ \| \phi_\alpha \|_\infty : \alpha \in \hat{G} \} < \infty \). The set of all such \(\phi \) is denoted by \(B^\infty(\hat{G}) \). It is a Banach algebra under the norm \(\| \phi \|_\infty = \sup \{ \| \phi_\alpha \|_\infty : \alpha \in \hat{G} \} \) and under co-ordinatewise operations. Let

\[\mathcal{E}_0(\hat{G}) = \{ \phi \in B^\infty(\hat{G}) : \lim_{\alpha \to \infty} \| \phi_\alpha \|_\infty = 0 \}. \]

For \(\mu \in M(G) \), the Fourier transform \(\hat{\mu} \) of \(\mu \) is a matrix-valued function, defined for \(\alpha \in \hat{G} \) by the relation

\[\alpha \mapsto \hat{\mu}_{\alpha} = \int_G T_{\alpha}(x^{-1}) d\mu(x). \]

Note that \(\hat{\mu} \in B^\infty(\hat{G}) \). Thus for \(\mu \in M(G) \), let \(\| \mu \|_\infty = \sup \{ \| \hat{\mu}_{\alpha} \|_\infty : \alpha \in \hat{G} \} \). We define \(M_0(G) \) to be the set \(\{ \mu \in M(G) : \hat{\mu} \in \mathcal{E}_0(\hat{G}) \} \).

Let \(A \in B(X) \), where \(X \) is a finite-dimensional, complex inner-product space. We define the dual norm to \(\| \cdot \|_\infty \) by \(\| A \|_1 = \sup \{ |\text{Tr} (AB)| : \| B \|_\infty \leq 1 \} \). This norm can also be characterized by the condition \(\| A \|_1 = \text{Tr} (|A|) \). For \(\phi \in B^\infty(G) \), we put

\[\| \phi \|_1 = \sum_{\alpha \in \hat{G}} n_\alpha \| \phi_{\alpha} \|_1. \]

Let \(B^1(\hat{G}) = \{ \phi \in B^\infty(\hat{G}) : \| \phi \|_1 < \infty \} \). Then \(B^1(\hat{G}) \) is a Banach space under \(\| \cdot \|_1 \).

For \(\phi \in B^1(\hat{G}) \), let \(\text{Tr}(\phi) = \sum_{\alpha \in \hat{G}} n_\alpha \text{Tr}(\phi_{\alpha}) \). For \(\psi \in B^1(G) \) and \(\phi \in B^\infty(G) \), we obtain the inequality \(|\text{Tr}(\phi \psi)| \leq \| \phi \|_\infty \| \psi \|_1 \).

We now define \(A(G) \), the Fourier algebra of \(G \), and we pair \(A(G) \) and \(M(G) \) to get the compact analogue of Corollary 7. Let \(A(G) \) be the set of \(f \in C(G) \) for which \(\hat{f} \in B^1(\hat{G}) \). We define a norm on \(A(G) \) by

\[\| f \|_A = \| \hat{f} \|_1 = \sum_{\alpha \in \hat{G}} n_\alpha \| \hat{f}_{\alpha} \|_1 < \infty. \]
Note that $A(G)$ is isomorphic to $L^1(\hat{G})$, because for each $\phi \in L^1(\hat{G})$, the function $f(x) = \sum_{\alpha \in \hat{G}} n_\alpha \text{Tr} (\phi_\alpha T_\alpha(x))$ is in $A(G)$; further,

$$
\| f \|_\infty = \sup_{x \in G} \left| \sum_{\alpha \in \hat{G}} n_\alpha \text{Tr} (\phi_\alpha T_\alpha(x)) \right| \leq \sum_{\alpha \in \hat{G}} n_\alpha \| \phi_\alpha \|_1 = \| \phi \|_1.
$$

We note that for $f \in A(G)$, $\| L(x)f \|_A = \| f \|_A$.

Theorem 9. Let G be a compact (nonabelian) group, and let $\mu \in M(G)$. Then $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \| \cdot \|_\infty)$ if and only if $\mu \in M_0(G)$.

Proof. For $\mu \in M(G)$ and $f \in A(G)$, we define

$$
\langle f, \mu \rangle = \int_G f(t) d\mu(t) = \text{Tr} (\hat{\mu} h),
$$

where $h(t) = f(t^{-1})$. If \hat{f} is defined by $\hat{f}(t) = f(t^{-1})$, then $\| \hat{f} \|_A = \| f \|_A$. Thus $\langle f, \mu \rangle = \text{Tr} (\hat{\mu} \hat{f})$. Let $A_k = \{ f \in A(G) : \| f \|_A < k \}$, and let $\mathcal{S}(A_k)$ be the topology on $M(G)$ of uniform convergence on the sets A_k. Since

$$
|\text{Tr} (\hat{\mu} \hat{f})| \leq \| \hat{\mu} \|_\infty \| \hat{f} \|_1 = \| \hat{\mu} \|_\infty \| f \|_A = \| \mu \|_\infty \| f \|_A,
$$

the topology $\mathcal{S}(A_k)$ is weaker than the $\| \cdot \|_\infty$-topology on $M(G)$. However, since $L^\infty(\hat{G})$ is identified with the dual space of $L^1(\hat{G})$ by $\psi \mapsto \text{Tr} (\phi\psi)$ for $\phi \in L^\infty(\hat{G})$ and $\psi \in L^1(\hat{G})$, $\mathcal{S}(A_k)$ is the same as the $\| \cdot \|_\infty$-topology on $M(G)$. Furthermore, A_k is $L(x)$-invariant, since $\| L(x)f \|_A = \| f \|_A$ for $f \in A(G)$. We now apply Theorems 3 and 4. \[\blacksquare\]

We conclude now with the general case. We shall use the machinery developed by P. Eymard [2], and we shall follow his conventions in the use of x in various formulae, where we used x^{-1} in the compact and abelian cases discussed above.

Let G be a locally compact group. Let Σ denote the equivalence classes of the continuous unitary representations on G. For $\pi \in \Sigma$, let \mathcal{H}_π denote the representation space. We define $\hat{\mu}$ to be a function on Σ by $\pi \mapsto \hat{\mu}(\pi) = \int_G \pi(x) d\mu(x)$. For $\mathscr{F} \subset \Sigma$, let

$$
\| \mu \|_{\mathscr{F}} = \sup \{ \| \hat{\mu}(\pi) \|_\infty : \pi \in \mathscr{F} \},
$$

where $\| \hat{\mu}(\pi) \|_\infty$ denotes the operator norm on \mathcal{H}_π. We define $C^*(G)$ to be the completion of $L^1(G)$ in $\| \cdot \|_\Sigma$ (see [2, Section 1.14]). Let $\{ \rho \}$ denote the subset of Σ containing just the left regular representation of G on $L^2(G)$. Let $C^*_\rho(G)$ denote the completion of $L^1(G)$ in $\| \cdot \|_\rho$ (see [2, Section 1.16]).

For $\mu \in M(G)$, we let $\rho(\mu)$ denote the bounded operator on $L^2(G)$, defined by $h \mapsto \mu * h$ ($h \in L^2(G)$), with operator norm $\| \rho(\mu) \|_\rho$. Let $\mathcal{B}(L^2(G))$ denote the set of bounded operators on $L^2(G)$. Then $C^*_\rho(G)$ can be identified with the closure of $\rho(L^1(G)) = \{ \rho(f) : f \in L^1(G) \}$ in $\mathcal{B}(L^2(G))$. If G is abelian, then $C^*_\rho(G) = C_0(G)$. If G is compact, then $C^*(G) = C_0(\hat{G})$.

Let $\text{VN}(G)$ denote the von Neumann subalgebra of $\mathcal{B}(L^2(G))$ generated by the left translation operators (see [2, Section 3.9]). For $\mu \in M(G)$, we have that $\rho(\mu) \in \text{VN}(G)$. Further, $C^*_p(G) \subset \text{VN}(G)$. If G is abelian, then $\text{VN}(G) = L^\infty(\hat{G})$. If G is compact, then $\text{VN}(G) = L^\infty(\hat{G})$.

Definition. $M_0(G) = \{ \mu \in M(G); \rho(\mu) \in C^*_p(G) \}$.

Let $B(G)$ denote the linear subspace of $C^B(G)$ generated by the continuous positive-definite functions. Then $B(G)$ can be identified with the dual space of $C^*(G)$ (see [2, Section 2.2]). For $f \in B(G)$, let $\|f\|_B$ denote the norm of f as a linear functional on $C^*(G)$. Finally, let $A(G)$ be the closed subspace of $B(G)$ generated by the continuous positive-definite functions with compact support (see [2, Section 3.4]). If G is abelian, then $A(G) = L^1(\hat{G})^\times$. If G is compact, then our previous definitions and those of Eymard are consistent. We have the inclusion $A(G) \subset C^B_{\text{ru}}(G)$, since $A(G) \subset C_0(G)$. We let $A_k = \{ f \in A(G); \|f\|_B < k \}$. Now for $f \in A(G)$, $\|L(x)f\|_B = \|f\|_B$; hence each A_k is $L(x)$-invariant. We pair $A(G)$ and $M(G)$ by the relation

$$\langle f, \mu \rangle = \int_G f(t)d\mu(t) \quad (f \in A(G) \text{ and } \mu \in M(G)).$$

Let $\mathcal{F}(A_k)$ be the topology on $M(G)$ of uniform convergence on the sets A_k. We wish to apply Theorems 3 and 4 as we did in Theorem 9. To do this, it remains only to observe that $\text{VN}(G)$ can be identified as the dual space of $A(G)$ (see [2, Section 3.10]), and for $\mu \in M(G)$, the identification is given by the relation

$$f \mapsto \int_G f(x)d\mu(x) = \langle f, \mu \rangle,$$

where $f \in A(G)$. It follows now by Theorems 3 and 4 that $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \| \cdot \|_\rho)$ if and only if $\rho(\mu) \in \rho(L^1(\hat{G}))$ (the closure in $\mathcal{B}(L^2(G))$).

Hence we have the following result.

THEOREM 10. Let G be a locally compact group. Let $\mu \in M(G)$. Then $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \| \cdot \|_\rho)$ if and only if $\mu \in M_0(G)$.

THEOREM 11. Suppose $A \subset C^B_{\text{ru}}(G)$ has the further property that A is dense in $L^1(|x|)$ for each $\mu \in M(G)$, and that for each $f \in A$ we have inclusions $fA_k \subset CA_k \setminus (k = 1, 2, \cdots)$, where the constants C and k' depend on f and on k. Then $L^1(\hat{G})^A$ is a band; in other words, if $\mu \in L^1(\hat{G})^A$ and $\nu \ll \mu$, then $\nu \in L^1(\hat{G})^A$.

Proof. Let $\mu \in L^1(\hat{G})^A$ and $\nu \ll \mu$; then $d\nu = g d\mu$, for some Borel function $g \in L^1(|x|)$. Now there exist functions $f_m \in A$ ($m = 1, 2, \cdots$) such that

$$\int_G |f_m - g|d|\mu| < 1/m,$$

that is, $\|f_m d\mu - d\nu\|_{M(G)} \to 0$ as $m \to \infty$. We claim that each $f_m d\mu$ belongs to $L^1(\hat{G})^A$. For if $\{g_n\} \subset L^1(G)$ and $g_n \to \mu$ in $\mathcal{F}(A_k)$, then $f_m g_n \to f_m d\mu$ (note that $f_m g_n \in L^1(G)$). In fact, for each k, we have the relations
\[\tau_k(f_m g_n - f_m d\mu) = \sup \left\{ \left| \int_G \phi(x)f_m(x)[g_n(x)dx - d\mu(x)] \right| : \phi \in A_k \right\} \]

\[\leq C \sup \left\{ \left| \int_G \phi(x)[g_n(x)dx - d\mu(x)] \right| : \phi \in A_{k'} \right\} = C \tau_{k'}(g_n - d\mu), \]

where \(C \) and \(k' \) depend on \(k \) and \(f_m \). Thus \(\tau_k(f_m g_n - f_m d\mu) \to 0 \), and \(f_m d\mu \in L^1(G)^A \).

Since \(\mathcal{F}(A_k) \)-closed sets are closed in the measure norm topology \((\sup \{ \| \phi \|_\infty : \phi \in A_k \} < \infty) \), we have that \(\nu \in L^1(G)^A \). \(\blacksquare \)

Corollary 12. For every locally compact group \(G \), \(M_0(G) \) is a band.

Proof. Let \(A = A(G) \) as before, and recall that \(A(G) \) is a dense subalgebra of \(C_0(G) \) (for the locally compact case, see [2, Section 3.4]). \(\blacksquare \)

References

University of Virginia
Charlottesville, Virginia 22901