Power series expansion answers

1. \(\sin(a) + x \cos(a) \)

 (Either take the derivative, or expand the sine using the angle-sum formula and then take \(\cos x \to 1, \sin x \to x \).)

2. \(\frac{1}{a^2} - \frac{x^2}{a^4} \)

 (Use \(1/(1 + \epsilon) \approx 1 - \epsilon \), with \(\epsilon = x^2/a^2 \).)

3. \(a^{5/2} \left(1 + \frac{5}{2} \frac{x}{a} + \frac{15}{8} \frac{x^2}{a^2} \right) \)

 (Factor out the \(a \), and expand \((1 + \epsilon)^{5/2}\) by taking derivatives.)

4. \(\frac{1}{\sqrt{b}} \left[a + \left(1 - \frac{a}{2b} \right) x \right] \)

 (Factor out the \(b \), expand the denominator using \(\sqrt{1 + \epsilon} \approx 1 + \epsilon/2 \), then use \(1/(1 + \epsilon) \approx 1 - \epsilon \), and finally multiply by \(a + x \), keeping the first order terms.)

5. \(1 + x^2 \)

 (Use \(\sin x \approx x \), and then \(e^\epsilon \approx 1 + \epsilon \).)

6. \(x \)

 (Apply \(\ln(1 + x) \approx x \) twice.)

7. \(x e^{-|a|} \)

 (To leading order, can ignore the \(x \)-dependence in the denominator.)

8. \(1 + \frac{ax}{2} + \left(\frac{b}{2} - \frac{a^2}{8} \right) x^2 \)

 (Expand \(\sqrt{1 + \epsilon} \) to second order by taking derivatives. In first order term, use \(\epsilon = ax + bx^2 \). In second order term, use \(\epsilon = ax \).)

9. \(-\frac{x^4}{8} \)

 (Either expand the trig functions to fourth order, or use trig relations to simplify expression to \(-(1 - \cos x)^2/2 \) and then expand the cosine to second order.)

10. \(\frac{1}{\sqrt{2}} \left(|x| - \frac{|x|^3}{8} \right) \)

 (Expand the inner square root to fourth order in \(x \). Factor \(x^2 \) out of the resulting expression, and then expand the square root of what is left to second order. The fact that you get \(|x| \) here means that you can’t just take derivatives to get the answer.)