Lecture 3 - Impedance & Transfer Functions

Recall voltage divider:

\[\frac{V_{in}}{V_{out}} = \frac{Z_1}{Z_1 + Z_2} \]

\[V_{out} = V_{in} \cdot \frac{Z_1}{Z_2} \]

This assumes no current flows from the output: \(I_{out} = 0 \)

What if \(I_{out} \neq 0 \)?

Can solve:

\[\frac{V_{in}}{I_{out}} = \frac{V_{out}}{I_{1}} \]

\[I_1 = I_{out} + I_2 \]

\[V_{in} = V_{out} - I_1 Z_1 \]

\[\Rightarrow V_{in} - V_{out} = (I_{out} + \frac{V_{out}}{Z_2}) Z_1 \]

\[V_{out} = I_2 Z_2 \]

\[V_{in} - I_{out} Z_1 = V_{out} \left(1 + \frac{Z_1}{Z_2} \right) \]

\[V_{out} = \frac{Z_2}{Z_1 + Z_2} V_{in} - I_{out} \frac{Z_1 Z_2}{Z_1 + Z_2} \]

So as \(I_{out} \) increases, \(V_{out} \) decreases.

This is a generic effect. Can describe with another version of Thevenin's Theorem.

Any network of sources and impedances acts like a single source \(V_{eff} \) in series with single impedance \(Z_{out} \)

Here:

\[\frac{V_{in}}{V_{out}} = \frac{Z_1}{Z_1 + Z_2} \]

\[\Rightarrow V_{eff} = \frac{Z_1 Z_2}{Z_1 + Z_2} V_{out} \]
Equivalent circuit is easy to analyze:

\[V_{\text{out}} = V_{\text{eff}} - I_{\text{out}} Z_{\text{out}} \]

Compare to above, see:

\[V_{\text{eff}} = U_{1,2} \cdot \frac{Z_k^2}{Z_1 + Z_k} \]

\[Z_{\text{out}} = \frac{Z_k^2}{Z_1 + Z_k} = Z_1 Z_2 \]

This is useful because it applies to any circuit

\[V_1 \xrightarrow{R} V_{\text{out}} \xrightarrow{\frac{1}{R}} V_2 \xrightarrow{\frac{1}{R}} V_1 \]

\[\Rightarrow V_{\text{out}} = V_{\text{eff}} - Z_{\text{out}} U_{\text{out}} \]

So for any circuit, output voltage decreases with current

\[Z_{\text{out}} = -\frac{dV_{\text{out}}}{dI_{\text{out}}} = \text{"output impedance"} \]

If you know \(Z_{\text{out}} \), can say how much current can be supplied by a circuit.

Good power supply has low \(Z_{\text{out}} \)

How to determine \(Z_{\text{out}} \):

1) Assume some \(I_{\text{out}} \), and solve for \(V_{\text{out}} \), like we did with divider.

2) Easier: Assume \(I_{\text{out}} = 0 \) and solve for \(V_{\text{out}} = V_{\text{eff}} \) (then assume \(V_{\text{out}} = 0 \) and solve for \(I_{\text{out}} / \text{short} \)).

Then \(Z_{\text{out}} = V_{\text{eff}} / I_{\text{out}} \text{(short)} \)

Example:

\[V_{\text{in}} \xrightarrow{\frac{Z_k}{Z_1}} I_{\text{short}} \]

\[I_{\text{short}} = \frac{V_{\text{in}}}{Z_k} \]

\[\Rightarrow Z_{\text{out}} = \frac{(V_{\text{in}} - \frac{Z_k Z_{\text{load}}}{Z_1})}{V_{\text{in}} / Z_1} = \frac{Z_k Z_{\text{load}}}{Z_1 + Z_k} \]
3) Good way to measure:
Measure $V_{\text{eff}} = V_{\text{out}}$ using voltmeter
Hook output to ground through impedance Z_L
measure V_{out} again

Effective circuit: $V_{\text{eff}} \frac{Z_{\text{out}}}{Z_{\text{out}} + Z_L} V_{\text{out}}$

See $V_{\text{out}} = \frac{Z_L}{Z_{\text{out}} + Z_L} V_{\text{eff}}$

Solve for $Z_{\text{out}} = Z_L \times \frac{V_{\text{out}}}{V_{\text{eff}} - V_{\text{out}}}$

Some notes:
- Really only applies to linear circuits. Many circuits are nonlinear, but can still approximate as linear for (relatively) small I_{out}
- If I_{out} is large, circuit dissipates internal power $I_{\text{out}}^2 R_{\text{out}}$
 If too large, circuit can break! Try not to short outputs to ground unless you know circuit can survive.
Related topic: Input Impedance

Output of any circuit acts like: \[V_{\text{eff}} - \frac{Z_{\text{in}}}{Z_{\text{in}} + Z_{\text{out}}} V_{\text{out}} \]

Input of any circuit acts like: \[U_{\text{i}} - \frac{Z_{\text{i}}}{Z_{\text{i}} + U_{\text{float}}} \]

\(U_{\text{float}} \) = voltage present at input if you don't hook anything up. (Generally \(\neq V_{\text{eff}/\text{out}} \))

Very often, \(U_{\text{float}} = \text{ground} \)

Example: \[U_{\text{i}} - \frac{Z_{\text{i}}}{Z_{\text{i}} + U_{\text{out}}} \]

With no \(U_{\text{i}} \) source, have \(U_{\text{i}} = U_{\text{out}} = 0 \)
\[\Rightarrow U_{\text{float}} = 0 \]

With \(U_{\text{i}} \), have \[I_{\text{i}} = \frac{U_{\text{i}}}{Z_{\text{i}} + Z_{\text{L}}} \]
\[\Rightarrow Z_{\text{i}} = Z_{\text{i}} + Z_{\text{L}} \]

Note we assume \(I_{\text{out}} = 0 \), because no load is present.
If we had a load \(Z_{\text{L}} \), \(Z_{\text{i}} \) would change.

Input impedance important for measuring instruments

 Voltmeter: \[U_{\text{i}} - \frac{Z_{\text{i}}}{Z_{\text{i}} + U_{\text{out}}} \]

Describes fact that some current flows in to device, can affect measurement:

\[\frac{U_{\text{V}}}{I_{\text{V}}} \]

\[\frac{Z_{\text{i}}}{Z_{\text{i}} + R} \]

Forms divider, actually measures \[V_{\text{meas}} = 9V \times \frac{Z_{\text{i}}}{Z_{\text{i}} + R} \]

Ideally, \(Z_{\text{i}} \gg R \), so \(V_{\text{meas}} \approx 9V \)
Or in ammeter:

\[I \rightarrow \frac{V}{Z_{in}} \rightarrow \]

Needs some input voltage \(V_{in} = I Z_{in} \) to operate.

For instance:

\[qV \rightarrow \frac{qV}{2R} \rightarrow \frac{qV}{2R + 2Z_{in}} \]

Unless \(Z_{in} \ll R \), I chooses when you add ammeter to circuit.

Introduce one more topic, discuss more next time:

transfer function

Often have relation \(V_{out} = () V_{in} \)

divider: \(V_{out} = \frac{Z_{2}}{Z_{1} + Z_{2}} V_{in} \)

In general, write \(V_{out} = G V_{in} \)

\(G = G(w) \) depends on frequency

Generally complex

Call \(G = \) transfer function

Describes what a circuit does

Often useful to express \(G \) in polar form \(G = |G| e^{i\phi} \)

Show using two plots: \(|G| \) vs \(w \)

\(\phi \) vs \(w \)

But \(|G| \) and \(w \) typically vary a lot: use log plots

\(\log |G| \) vs \(\log w \) (or \(\log \phi \))

\(\phi \) vs \(\log w \)
Call pair: Bode plot

Convenient way to describe how circuit functions

\(\log |G| \) so convenient, it has a special unit! dB

Write \(g \text{ (in dB)} = 20 \log |G| \)

So 20 dB \(\Rightarrow \) \(|G| = 10 \)

-20 dB \(\Rightarrow \) \(|G| = 0.1 \)

Usually see Bode plot as \(g \) vs. \(\log_{10} f \)

\(\phi \text{ (deg) vs. } \log_{10} f \)