AVERCH-JOHNSON EFFECT

• Consider a regulated firm producing a single good with two factor inputs; capital K and labor L.

• The firm’s production function is denoted by $f(K, L)$.

• The per unit costs of capital and labor are denoted by r and w, respectively.

• The inverse demand function is denoted by $p(Q)$.
EFFICIENT PRODUCTION
Let us suppose first the firm is forced to produce at a certain level Q^*. The optimal combination of inputs required to achieve this level of output is the solution to

$$\min_{K,L} rK + wL$$

s.t

$$f(K, L) \geq Q^*$$
Isoquant

slope depends on substitability between capital and labor
Minimal cost production

\[f(K, L) = Q^* \]
Efficient “Path”
Note that at the optimal solution $E(Q^*) = (K^*, L^*)$ we have

$$\frac{\partial f(K,L)}{\partial K} : \frac{\partial f(K,L)}{\partial L} = \frac{r}{w}$$

The ratio of marginal productivity equals that of inputs.
RATE OF RETURN REGULATION
Let us denote by $\Pi(K, L)$ the firm’s profit for K and L:

$$\Pi(K, L) = p(Q)Q - rK - wL$$

where $Q = f(K, L)$.

In their seminal paper, Averch & Johnson (1961) modeled rate of return regulation as a constraint of the form

$$\frac{p(Q)Q - wL}{K} \leq r^*$$
where \(r^* > r \) is the \textit{allowed} rate of return. Note that the previous equation can be rewritten as:

\[
\Pi(K, L) \leq K(r^* - r)
\]
Rate of Return Regulation
O is the (unregulated) optimal profit combination and $M = (K^M, L^M)$ is the optimal solution to the problem:

$$\max_{K,L} \Pi(K, L)$$

s.t

$$\Pi(K, L) \leq K(r^* - r)$$

Note that at point M, the firm is also using maximum level of capital allowed.
RELATIONSHIP BETWEEN POINTS \(E \) AND \(M \)

Let us now consider the efficient production combination for output \(Q^M = f(K^M, L^M) \) say \(E(Q^M) = (K^*, L^*) \)

There are two possibilities:

- (Case A) Either \(K^* > K^M \) and \(L^* < L^M \)
- (Case B) Or \(K^* < K^M \) and \(L^* > L^M \)
Impossibility of Case A

Isoquant at Q^M
Case B (Averch-Johnson Effect)
In Case B, we have that the firm uses up more capital than is socially optimal. Mathematically,

\[
\frac{\partial f(K,L)}{\partial K} \quad \frac{\partial f(K,L)}{\partial L} = \frac{r - \alpha}{w}
\]

where \(\alpha < r \).
CRITICISMS OF AVERCH-JOHNSON RESULT

• There is very little empirical evidence supporting it.
• Assumptions are too strong.
• In particular, it ignores investment dynamics