Reducing Implicit Racial Preferences: II. Intervention Effectiveness Across Time

Calvin K. Lai
Harvard University

Allison L. Skinner
University of Washington

Erin Cooley
Colgate University

Sohad Murrar and Markus Brauer
University of Wisconsin – Madison

Thierry Devos
San Diego State University

Jimmy Calanchini
University of California, Davis

Y. Jenny Xiao
New York University

Christina Pedram and Christopher K. Marshburn
University of California, Irvine

Stefanie Simon
Carleton College

John C. Blanchar
University of Arkansas

Jennifer A. Joy-Gaba
Virginia Commonwealth University

John Conway, Liz Redford, and Rick A. Klein
University of Florida

Gina Roussos and Fabian M. H. Schellhaas
Yale University

Mason Burns
Purdue University

Xiaoqing Hu
University of Texas at Austin

Meghan C. McLean
Rutgers University – New Brunswick

Jordan R. Axt
University of Virginia

Shaki Asgari
Measurement Incorporated, Durham, North Carolina

Kathleen Schmidt
Wesleyan University

Rachel Rubinstein
Rutgers University – New Brunswick

Maddalena Marini
Harvard University

Sandro Rubichi
University of Modena and Reggio Emilia

Jiyun-Elizabeth L. Shin
Stony Brook University

Brian A. Nosek
University of Virginia and Center for Open Science, Charlottesville, Virginia

This article was published Online First June 16, 2016.
Calvin K. Lai, Edmond J. Safra Center for Ethics and Department of Psychology, Harvard University; Allison L. Skinner, Department of Psychology and Institute for Learning & Brain Sciences, University of Washington; Erin Cooley, Department of Psychology, Colgate University; Sohad Murrar and Markus Brauer, Department of Psychology, University of Wisconsin – Madison; Thierry Devos, Department of Psychology, San Diego State University; Jimmy Calanchini, Department of Psychology, University of California, Davis; Y. Jenny Xiao, Department of Psychology, New York University; Christina Pedram and Christopher K. Marshburn, Department of Psychology, University of California, Irvine; Stefanie Simon, Carleton College; John C. Blanchar, University of Arkansas; Jennifer A. Joy-Gaba, Virginia Commonwealth University; John Conway, Liz Redford, and Rick A. Klein, University of Florida; Gina Roussos and Fabian M. H. Schellhaas, Yale University; Mason Burns, Purdue University; Xiaoqing Hu, University of Texas at Austin; Meghan C. McLean, Rutgers University – New Brunswick; Jordan R. Axt, University of Virginia; Shaki Asgari, Measurement Incorporated, Durham, North Carolina; Kathleen Schmidt, Wesleyan University; Rachel Rubinstein, Rutgers University – New Brunswick; Maddalena Marini, Harvard University; Sandro Rubichi, University of Modena and Reggio Emilia; Jiyun-Elizabeth L. Shin, Stony Brook University; Brian A. Nosek, University of Virginia and Center for Open Science, Charlottesville, Virginia.

continued
Implicit preferences are malleable, but does that change last? We tested 9 interventions (8 real and 1 sham) to reduce implicit racial preferences over time. In 2 studies with a total of 6,321 participants, all 9 interventions immediately reduced implicit preferences. However, none were effective after a delay of several hours to several days. We also found that these interventions did not change explicit racial preferences and were not reliably moderated by motivations to respond without prejudice. Short-term malleability in implicit preferences does not necessarily lead to long-term change, raising new questions about the flexibility and stability of implicit preferences.

Keywords: attitudes, Implicit Association Test, implicit social cognition, malleability, racial prejudice

Early theories of implicit social cognition suggested that implicit associations were largely stable. These claims were supported by evidence that changes in conscious belief did not lead to corresponding changes in implicit associations (e.g., Devine, 1989; Shiffrin & Schneider, 1977; Wilson, Lindsey, & Schooler, 2000). The psychologist John Bargh referred to the stability of implicit cognitions as the “cognitive monster”: “Once a stereotype is so entrenched that it becomes activated automatically, there is really little that can be done to control its influence” (p. 378, Bargh, 1999). This dominant view has changed over the past 15 years to one of implicit malleability, with many studies finding that implicit associations are sensitive to lab-based interventions (for reviews, see Blair, 2002; Gawronski & Bodenhausen, 2006; Lai, Hoffman, & Nosek, 2013). These interventions vary greatly in approach. In one, for example, participants are exposed to images of people who defy stereotypes (e.g., admired Black people/hated White people; Dasgupta & Greenwald, 2001; Joy-Gaba & Nosek, 2010). In another, participants are given goals to override implicit biases (e.g., Mendoza, Gollwitzer, & Amodio, 2010; Stewart & Payne, 2008).

In most of the research on implicit association change, the short-term malleability of associations is tested by administering an implicit measure immediately after the intervention. Studies examining long-term change in implicit associations are rare. In a meta-analysis on experiments to change implicit associations (Forscher, Lai et al., 2016), only 22 (3.7%) of 585 studies examined whether change in implicit associations persisted beyond a single session. The studies do not provide a firm basis for knowing when lasting change will or will not happen. Of the 22 experiments, 9 (40.1%) studies found significant evidence of lasting change (e.g., Vezzali, Capozza, Giovannini, & Stathi, 2012; Olson & Fazio, 2006), 7 (31.8%) studies did not find significant evidence (e.g., Jang & Kim, 2011; Thomas, Judge, Brownell, & Vartanian, 2006), and 6 (27.2%) studies found mixed evidence (e.g., O’Brien, Puhl, Latner, Mir, & Hunter, 2010; Sportel, de Huluvu, de Jong, & Nauta, 2013). As such, cumulative knowledge about the mechanisms and conditions necessary for changing implicit associations is only beginning to develop. The central interest of the present article is to systematically examine when short-term malleability in implicit associations translates into persisting change.

Comparative Approaches to Intervention Research

A standard model of intervention research is to isolate mechanisms in order to study how those mechanisms work. However, an exclusive focus on isolating mechanisms within interventions can impede progress. A complementary strategy takes a comparative approach by examining many interventions simultaneously. This strategy can reveal differences in effectiveness that would otherwise be difficult to uncover when testing interventions in isolation. Once revealed, mechanism-focused research can unpack the causes underlying effective interventions.

Driven by a lack of comparative work on implicit bias reduction approaches, Lai and colleagues (2014) experimentally compared...
the effects of 17 interventions and one sham intervention on implicit racial preferences in “Reducing Implicit Racial Preferences: I. A Comparative Investigation of 17 Interventions” (RIRP: I). Relative to a control condition, nine of the 18 interventions were effective at reducing implicit biases when assessed immediately following administration of the intervention. The effective interventions varied widely in design and hypothesized mechanism. Effective interventions in RIRP: I tended to be highly self-relevant, emotionally evocative, and either gave experiences with positive Black exemplars and negative White exemplars or concrete strategies to override bias. Interventions that were ineffective tended to induce reflection on egalitarian values or encourage taking the perspective of Black individuals.

Overview

We conducted two large-scale confirmatory experiments to examine the durability of implicit bias reduction effects from all nine effective interventions in RIRP: I. Five interventions gave participants experiences with counterstereotypic exemplars, one intervention primed multicultural ideology, two interventions employed evaluative conditioning, and two interventions gave intentional strategies to overcome bias. In Study 1, we investigated intervention effectiveness on implicit and explicit racial preferences immediately and after a delay of several hours to several days in a sample of 1,021 North American students from two universities. We also assessed students’ support for affirmative action policies to examine whether changes in racial preferences transferred to changes in racially relevant political preferences. In Study 2, we tested the nine interventions again with a shorter delay of several hours to several days in 5,295 participants from 17 American universities. These findings provide new insight into the durability of implicit bias change, establishing a new frontier for understanding the conditions under which shifts in implicit preferences reflect short-term malleability or longer-term change.

Study 1

Method

We report how we determined our sample size, all data exclusions, all manipulations, and all measures in this article. All materials and supplemental analyses are available here at https://osf.io/um4ye/. This study’s analysis plan was preregistered before data collection at https://osf.io/zeupk/. A version of this study’s design and analysis plan was peer reviewed by the editor and ad hoc reviewers at this journal (https://osf.io/kz7me/).

Participants. Participants were non-Black undergraduates (83.3% White, 73.7% female, median age of 18) from Brock University and the University of Virginia. Our plan for determining sample size was to collect as many participants as we could in the Fall 2013 semester; 1192 participants from Brock University and 159 participants from the University of Virginia began the study at Time 1 (T1). Of those 1391 participants, 261 (18.7%) were excluded because they did not finish T1 or took T1 multiple times, 53 (3.8%) because they identified as Black or White/Black multiracial, 13 (9%) because they chose not to report their racial identity, 29 (2.0%) because they responded too quickly or made too many errors on the implicit measure (see Dependent Measures section for more detail), and 14 (1.0%) because they accessed the second session before the first session. This left a final sample of 1021 participants who completed T1, of which 872 (85.4%) also completed Time 2 sessions (T2). In terms of statistical power to detect an effect size of Cohen’s $d = .32$ (the average effect size of the effective interventions from RIRP: I) for each individual effect, we had 38% power to detect a reduction against control at T1 at $p < .01$ and 31% power to detect a reduction against control at T2 at $p < .01$.

Procedure. Participants were shown a link to the study (delivered via e-mail at Brock University and via the participant pool website at the University of Virginia) and instructed to complete it online. Two-thirds of participants were randomly assigned to begin the study by taking a pretest Race Implicit Association Test (IAT) and one third were assigned to take nothing at all. This was done to allow for analysis of within-subjects change and analysis of unique effects from taking a pretest (Solomon, 1949). Participants were then randomly assigned to one of nine intervention conditions or a control condition with no intervention. As the final part of the first session, they took a posttest Race IAT and a measure of explicit racial prejudice. Participants at Brock University also completed a demographics questionnaire (University of Virginia participants’ demographic data came from a research pool pre-screen questionnaire). Procedurally this session was similar to Study 4 in RIRP: I.

Between two and four days after T1 (and with reminders after 2 or 3 days), participants were e-mailed a link for T2.1 On average, participants returned for the second session after 3.28 days ($SD = 1.97$ days). In that session, they completed the Race IAT, two items assessing support for pro-Black affirmative action, a measure of explicit racial prejudice, and an item assessing their effort in the study. See Figure 1 for a schematic of the procedure.

Dependent measures.

Implicit Association Test (IAT). The IAT assesses the relative strength of associations between two concepts (i.e., White people, Black people) and two attributes (i.e., Good, Bad; see Nosek, Greenwald, & Banaji, 2005, for a review). It does so by comparing how quickly participants respond when one set of concepts/attributes are paired together (e.g., White people + Good/Black people + Bad) with how quickly they respond when another set of concepts/attributes are paired together (e.g., White people + Bad/Black people + Good). Table 1 describes the block structure and method-related randomization (i.e., for order and practice effects) of the IAT. The procedure followed the recommendations of Nosek, Greenwald, and Banaji (2005) but with five blocks instead of seven and fewer trials for each block (16, 24, or 32 trials instead of 20 or 40 trials) to reduce the total time required. Participants were instructed to categorize words and images as quickly and

1 Because of an error, participants at Brock University were e-mailed a link to the second session at the same time as the first one. When examining the overall sample, 14 participants took the second session before the first. 91 participants took the second session in under an hour after the first session, 26 participants took it between 1 and 24 hours later, 85 took it between 1 and 2 days later, 359 took it between 2 and 4 days later, and 312 took it 4 days after or later. The 14 participants who took the second session before the first were excluded from all analyses, and the rest of the participants were included in all analyses.
accurately as possible. The IAT was scored with the D2 algorithm recommended by Greenwald, Nosek, and Banaji (2003). A positive d score indicates faster responding when White faces were paired with good words and Black faces were paired with bad words compared to the reverse. Positive scores are interpreted as an implicit preference for White people relative to Black people.\(^2\) Participants were excluded from all analyses if (a) more than 10% of critical trials were faster than 300 ms across all IATs they completed, (b) if the error rate was higher than 30% across all IATs, (c) if more than 25% of trials were faster than 300 ms in any critical block in any IAT, or (d) if the error rate was higher than 50% in any critical block in any IAT. We excluded 29 (2.0%) participants in Study 1 and 101 (1.6%) participants in Study 2 for fulfilling these exclusion criteria. Participant exclusion rates did not differ by condition in Study 1, \(\chi^2(18, N = 1050) = 21.86, p = .24\), or in Study 2, \(\chi^2(18, N = 5396) = 16.78, p = .54\).

Explicit racial preferences. Participants completed three self-report items measuring racial prejudice. One assessed relative preference for White people compared to Black people on a 7-point Likert scale ranging from I strongly prefer Black people to White people to I strongly prefer White people to Black people. The other two items were feeling thermometers rating warmth for White people and Black people on a 7-point scale ranging from very cold to very warm. For analyses, a difference score was computed between the two feeling thermometers and averaged with the racial preference measure after standardizing each (\(SD = 1\)) while retaining their rational zero points of no preference between White people and Black people. More positive scores indicated a greater explicit preference for White people over Black people.

Support for affirmative action. In the second session, participants completed two self-report items measuring support for affirmative action by responding no (0) or yes (1).\(^3\) One item assessed support for affirmative action in corporate settings:

A corporate personnel officer is evaluating a Black job applicant and a White job applicant who are identically qualified except the White applicant has more prior experience in related work. Is there a reasonable justification for this personnel officer hiring the Black applicant rather than the White applicant?

The other assessed support for affirmative action in higher education: “A college admissions officer considers applications from Black applicants and White applicants with similar credentials and cannot accept all of them. Should the admissions officer more often accept Black applicants than White applicants?”

Effort on study. Participants completed two 5-point self-report items assessing their effort and motivations for taking the study. The items were “Did you care about your performance in the study?” and “What level of effort did you put forth in the study?” The first item had the response options not at all, slightly, somewhat, very much, and a great deal. The second item had the response options no effort, slight effort, moderate effort, strong effort, and extreme effort. On average, participants reported between moderate and strong effort (\(M = 3.66, SD = .72\)).

Interventions. RIRP: I identified nine interventions that shifted IAT scores immediately following the intervention. For Study 1, we included all nine with no or minor revisions plus a no-intervention control condition (for more information about the development of these interventions, see La et al., 2014). Next, we describe each of these nine interventions in four categories: Exposure to Counterstereotypical Exemplars, Appeals to Egalitarian Values, Evaluative Conditioning, and Intentional Strategies to Overcome Biases. Details of the intervention procedures and links to self-administer the procedures are available at https://osf.io/vk24t/

Exposure to counterstereotypical exemplars. Four interventions were designed to reduce IAT scores through experiences with positive Black exemplars and negative White exemplars: Vivid Counterstereotypic Scenario, Practicing an IAT with Counterstereotypical Exemplars, Shifting Group Boundaries Through Competition, and Shifting Group Affiliations Under Threat.

Vivid counterstereotypic scenario. Participants in this intervention read a vivid second-person story in which they are the protagonist. The participant imagines walking down a street late at night after drinking at a bar. Suddenly, a White man in his forties assaults the participant, throws him/her into the trunk of his car, and drives away. After some time, the White man opens the trunk and assaults the participant again. A young Black man notices the second assault and knocks out the White assailant, saving the day. After reading the story, participants are told the next task (i.e., the race IAT) was supposed to affirm the associations: White = Bad, Black = Good. Participants were instructed to keep the story in mind during the IAT. This intervention employs extreme counterstereotypes—a White villain and a Black hero (Dasgupta & Greenwald, 2001). It is also self-relevant: participants imagine themselves in the situation. A study that compared second and third-person perspectives with a variant of this story found self-relevance to be essential for effectiveness (Marini, Rubichi, & Sartori, 2012). Lastly, the content and style was emotionally in-

\(^2\) By ‘implicit preferences’ we mean indirectly assessed preferences, in contrast to explicit or directly assessed preferences. Evidence for malleability or change in IAT scores do not guarantee a change in associations because measures are influenced by additional influences (Calanchini & Sherman, 2013; Nosek et al., 2007).

\(^3\) As a reviewer noted, these items did not sufficiently capture the dynamics of affirmative action in North America (for examples of more thorough assessments, see Federico & Sidanius, 2002; Haley & Sidanius, 2006). We include analyses of these items in this article but caution against overgeneralization of the findings because of their limited scope.
volving (Rudman, 2004). In RIRP:I, this intervention was the most effective out of 17 tested, $d = .49$, 95% CI [.41, .58].

Practicing an IAT with counterstereotypical exemplars. Exposure to counterstereotypical Black and White exemplars can shift implicit racial preferences (Dasgupta & Greenwald, 2001; Joy-Gaba & Nosek, 2010). We employed a variation of the IAT procedure to reinforce positive associations with Blacks and negative associations with Whites. Participants completed 20 practice trials, followed by the combined blocks of the race IAT that paired Black with Good and White with Bad (32 trials). The stimulus items representing Blacks and Whites were the same as those used in the race IAT, plus six famous positive Black exemplars (e.g., Oprah Winfrey) and six infamous negative White exemplars (e.g., Adolf Hitler). Before the IAT practice, participants were shown pictures of each of these exemplars along with brief one-line descriptions of what they are known for. Study 1 included some negative White exemplars that participants may not know or remember (i.e., John Gotti, Timothy McVeigh, Charles Manson, Ted Bundy), but participants were reminded of their notorious behavior. In Study 2, we replaced those negative exemplars with more recent exemplars (i.e., Bernie Madoff, Anders Breivik, Jared Loughner, Jerry Sandusky) and similar reminders of their notorious behavior. This intervention was the third-most effective in RIRP:I, $d = .49$, 95% CI [.41, .58].

Shifting group boundaries through competition. Participants played in a simulated dodgeball game in which their teammates were Black and their opponents were White. The Black teammates saved the participants from being knocked out and were good sports, whereas the opposing all-White team engaged in unfair play and were bad sports. At the end of the intervention, participants were instructed to make intentions to think “Black = Good” and “White = Bad” and to remember how their Black teammates helped them and their White enemies hurt them during the IAT. This intervention was motivated by evidence that intense competition and strong outgroup threats lead to negative outgroup attitudes (Riek, Mania, & Gaertner, 2006). We expected that flipping the script, (i.e., by cooperating with Black outgroup members to compete against White in-
word and made no response (i.e., ‘No-Go’) when a Black face was paired with a bad word. They were also instructed to count the number of times they saw a Black person and a good word paired together. A majority of the trials (46 out of 80) were ‘Go’ trials (i.e., Black faces paired with good words). Afterward, participants reported how many Black/good pairings they counted. This intervention was the sixth-most effective in RIRP:I, \(d = .32\), 95% CI [0.24, .41].

Intentional strategies to overcome biases. Performance on implicit measures can be altered via strategies to override implicit bias. Two interventions gave participants strategies to alter the expression of implicit associations: Using Implementation Intentions and Faking the IAT. These interventions differ in that Using Implementation Intentions provides a strategy to alter the expression of implicit biases themselves, whereas Faking the IAT gives participants strategies to subvert the procedure, which presumably does not have an effect on actual implicit associations. The latter is a sham intervention for comparative purposes.

Using implementation intentions. Making desired behaviors more accessible and automatic is an effective approach for aligning intentions with behavior (Stewart & Payne, 2008). A popular method for doing so is implementation intentions: if–then plans that tie a behavioral response to a situational cue (Gollwitzer, 1999). Participants learned about the tendency for people to exhibit implicit biases for Whites over Blacks, then were told that they could overcome that bias by committing themselves to an implementation intention by saying to themselves silently, “If I see a Black face, then I will respond by thinking ‘good.’” In Study 1, participants also took an abbreviated IAT at the beginning of the intervention to familiarize themselves with the task. Implementation Intentions was the fifth-most effective intervention in RIRP:I, \(d = .38\), 95% CI [0.30, .47].

Faking the IAT. The IAT is resistant to naive fakers (Banse, Seise, & Zerbes, 2001; Kim, 2003), but is susceptible to faking when given concrete instructions or experience with the IAT (Fiedler & Bluemke, 2005; Steffens, 2004). As a comparison to the “true” interventions, participants completed an adapted version of a faking manipulation from Cvenecek and colleagues (2010). Participants first learned about the tendency for people to exhibit implicit biases for Whites over Blacks. Then, they were told to alter their responses on the IAT by slowing down when “Black and Bad” are paired together and speeding up when “White and Bad” are paired together. In Study 1, participants also took an abbreviated IAT at the beginning of the intervention to familiarize themselves with it. Faking the IAT was the fourth-most effective intervention in RIRP:I, \(d = .39\), 95% CI [0.31, .47].

Results

For a complete description of our preregistered analysis plan (and deviations from that plan), see https://osf.io/zeupk/. Most analyses in this section were conducted with and without data collection site as a covariate. The pattern of results did not change for any analysis due to the inclusion of this covariate and we report only the versions with the site covariate in this section. Analyses without site as a covariate and other supplemental analyses (e.g., analyses using listwise deletion) that are not reported in the main text are available at https://osf.io/um4ye/. Because of the number of analyses we computed for this section, we set our alpha criterion as \(p = .01\) instead of the conventional \(p = .05\).

Implicit racial preferences. Participants completed two or three IATs over the course of two sessions. Overall, participants had IAT scores preferring Whites over Blacks at pretest, posttest, and follow-up assessments (\(N_s = 670, 1016, 866; M_s = .64, .37, .48\); SDs = .40, .48, .40; \(d_s = 1.61, .77, 1.21\)). These IAT scores were positively, but not strongly, correlated (\(r_{\text{pretest-posttest}} = .666\) = .22, \(r_{\text{pretest-follow-up}} = .561\) = .22, \(r_{\text{posttest-follow-up}} = .859\) = .30). The relatively weaker correlations compared to prior research (Nosek et al., 2007; Bar-Anan & Nosek, 2014) could be attributable to differential sensitivity to the interventions or using a shortened version of the IAT (5-block instead of 7-block).

IAT scores were moderated by time of assessment, \(F(1, 864) = 30.67, p < .001\), \(\eta^2_p = .03\), condition, \(F(9, 850) = 3.07, p = .001\), \(\eta^2_p = .03\), data collection site, \(F(1, 850) = 9.11, p = .003\), \(\eta^2_p = .01\), and an interaction between time and condition, \(F(9, 850) = 7.44, p < .001\), \(\eta^2_p = .07\), but not by an interaction between time and site, \(F(1, 850) = 3.09, p = .079\), \(\eta^2_p = .00\). Follow-up analyses found that condition had significant effects on IAT scores (controlling for site) at posttest, \(F(9, 1005) = 8.05, p < .001\), \(\eta^2_p = .07\), but not at pretest, \(F(9, 659) = .77, p = .64\), \(\eta^2_p = .01\), or at follow-up, \(F(9, 855) = 2.28, p = .016\), \(\eta^2_p = .02\). See Table 2 for a summary of implicit preferences by condition.

Five of the nine interventions significantly reduced IAT scores relative to the control condition at posttest controlling for site: Vivid Counterstereotypic Scenario, \(F(1, 199) = 21.38, p < .001\), \(\eta^2_p = .10\), Practicing an IAT with Counterstereotypic Exemplars, \(F(1, 210) = 8.69, p = .004\), \(\eta^2_p = .04\), Evaluative Conditioning with the GNAT, \(F(1, 207) = 9.69, p = .002\), \(\eta^2_p = .05\), Using Implementation Intentions, \(F(1, 202) = 8.47, p = .004\), \(\eta^2_p = .04\), and Faking the IAT, \(F(1, 188) = 35.93, p < .001\), \(\eta^2_p = .16\). The four interventions that failed to significantly reduce posttest IAT scores (controlling for site) were Shifting Group Boundaries through Competition, \(F(1, 213) = 3.56, p = .061\), \(\eta^2_p = .02\), Shifting Group Affiliations Under Threat, \(F(1, 203) = 5.18, p = .024\), \(\eta^2_p = .03\), Evaluative Conditioning, \(F(1, 196) = .57, p = .45\), \(\eta^2_p = .00\), and Priming Multiculturalism, \(F(1, 187) = 2.97, p = .086\), \(\eta^2_p = .02\). However, all intervention effects were in the expected direction, with some showing weaker effect sizes than in RIRP:I. Lower power of the design may be contributing to non-significance of some effects at posttest.

Overall, IAT scores were slightly smaller at follow-up compared to pretest for intervention conditions. However, this was true of the control condition as well, which likely reflects the reduction of IAT effects as a function of experience with the measure (Greenwald et al., 2003). None of the interventions significantly reduced IAT scores relative to control at follow-up controlling for site, \(p_s > .01\).

Because participants varied in the amount of time between posttest and follow-up, it is possible that participants who chose to take the follow-up session earlier showed more evidence of persistent change than participants who took the follow-up session later. To examine this possibility, we investigated whether the amount of time between the intervention and the posttest assessment predicted how much IAT scores rebounded. We tested a model that predicted follow-up IAT scores from condition, time between sessions (in seconds), site, and the interaction between condition and time between sessions. We found no main effect of
Implicit–explicit relations. Implicit and explicit preferences were weakly related at posttest, \(r(982) = .10, p = .003 \), and not related at follow-up, \(r(851) = .06, p = .063 \). These relations were much weaker than previously observed (Nosek, 2007; Nosek et al., 2007), perhaps because of the interventions or to the undergraduate sample. To test the effect of interventions on the strength of implicit–explicit relations, we tested models with condition, site, implicit preferences, and an interaction between condition and implicit preferences in predicting explicit preferences. We did not find an interaction between condition and implicit preferences in predicting explicit preferences at either posttest, \(F(9, 963) = 1.80, p = .064, \eta^2_p = .02 \), or at follow-up, \(F(9, 832) = .57, p = .83, \eta^2_p = .01 \). We also tested the reverse: condition, site, explicit preferences, and an interaction between condition and explicit preferences in predicting implicit preferences. We did not find an interaction either at posttest, \(F(9, 963) = 1.51, p = .14, \eta^2_p = .01 \), or at follow-up, \(F(9, 832) = .89, p = .53, \eta^2_p = .01 \).4

Support for affirmative action. Participants did not support affirmative action overall, \(M = .16, SD = .26 \). Only 223/867 (25.7%) participants supported affirmative action in corporate settings and only 86/850 (6.6%) supported affirmative action in higher education. Overall support for affirmative action was not significantly related to follow-up implicit preferences at \(p < .01 \), \(r(861) = -.08, p = .022 \), or follow-up explicit prejudice, \(r(858) = -.05, p = .19 \). Experimental condition did not affect support for affirmative action in corporate settings, \(\chi^2(9, N = 867) = 8.99, p = .44 \), higher education, \(\chi^2(9, N = 794) = 5.39, p = .80 \), or overall, \(F(9, 860) = 1.06, p = .39, \eta^2_p = .01 \).

Robustness checks and attrition rates. Robustness checks. We examined the robustness of the reported analyses in a number of ways. In this section, we summarize the results of these tests (See https://osf.io/um4yv for a supplement containing a full review). We tested alternative statistical models of implicit bias change, whether taking a pretest IAT influenced intervention effectiveness, whether demographic characteristics (i.e., university affiliation and participant race) was related to intervention effectiveness, and whether IAT variant (i.e., stimuli, category labels, and background color) and IAT order (i.e., taking the compatible vs. incompatible block first) were related to IAT scores. We did not find evidence for any of these models except for IAT order, suggesting that the effects were relatively robust across design factors. For each of the three IAT's, participants were randomly assigned to take the compatible block first or the incompatible block first. Taking the compatible block first led to smaller pretest IAT scores, no difference in the posttest IAT, and larger follow-up IAT scores. IAT order did not interact with experimental condition in predicting IAT scores.

4 Note that these analyses include a predictor that was measured after the intervention. However, there was no effect of condition on explicit preferences (see Explicit Racial Preferences section). That means it was unlikely that there was a confounding influence in the tests.
Attrition rates. To examine attrition rates, we included all participants who began the study except for participants who took T1 multiple times, participants who identified as Black or White/Black multiracial or chose not to report their racial identity, and participants who accessed the second session before the first session. This left a sample of 1124 participants who began the study, of which 1050 (93.4%) completed the first session and 929 (82.7%) completed both sessions.

We did not find evidence for differential attrition in this study. We first tested to see whether experimental condition predicted attrition rates. It did not predict attrition rates within the first session, $\chi^2(9, N = 1108) = 16.86, p = .051$, for participants who completed the first session but did not complete the second, $\chi^2(9, N = 1050) = 7.77, p = .56$, or overall attrition rates, $\chi^2(9, N = 1108) = 8.77, p = .46$. As suggested by reviewers, we also tested models examining attrition as a function of pretest IAT scores and as a function of experimental condition. Pretest IAT scores did not predict first session attrition rates, $\chi^2(1, N = 716) = 1.55, p = .21$, attrition rates for participants who completed the first session, $\chi^2(1, N = 682) = 1.13, p = .29$, or attrition rates overall, $\chi^2(1, N = 716) = 2.67, p = .10$. Experimental condition did not predict attrition rates in these models either, $ps = .20, .40, .20$. Lastly, we tested whether there were differences in overall attrition rates as a function of an interaction between experimental condition and gender, age, and religiosity. We found no significant evidence for main or interactive effects of experimental condition and demographics in these models, $ps > .10$.

Discussion

In Study 1, we examined whether the nine interventions from RIRP:I that were immediately effective at reducing implicit preferences continued to be effective after a delay. We found that they did not. Only five of the nine interventions replicated the immediate reduction effect at $p < .01$, and none had an effect after a delay. Implicit preferences rebounded quickly, possibly within several hours. We also found that the interventions did not have an effect on explicit preferences, implicit-explicit relations, or support for affirmative action. One interpretation for these effects is that these interventions induce short-term malleability in implicit preferences but lack the ability to induce a long-term change. Another interpretation is that this study lacked the statistical power to detect effects reliably. Supporting this interpretation, the study only had 36% power to detect intervention effects at $p < .01$ that are similar in size to the average effect in RIRP:I’s nine effective interventions. In Study 2, we made an effort to reduce the plausibility of low statistical power as an explanation by conducting a large-scale study with more than five times as many participants as Study 1.

Study 2

Method

Participants. Participants were non-Black undergraduates (60.3% White, 69.4% female, median age of 19) from 17 American universities. Our plan for determining sample size was to collect data from as many participants we could in the Fall 2014 semester; 6239 participants began the study at T1, of which 575 (9.2%) were excluded because they did not finish T1 or took T1 multiple times, 217 (3.5%) because they identified as Black or White/Black multiracial, 45 (7.7%) because they chose not to report their racial identity, 101 (1.6%) because they misbehaved on the IAT (see Dependent Measures section for more detail), 2 (0.03%) because their IAT data was missing because of technical issues, and 4 (0.06%) because they accessed the second session before the first session. This left a final sample of 5295 participants who completed T1, of which 4888 (92.3%) also completed valid T2 sessions.

This sample was highly powered to detect very small effects. In terms of statistical power to detect an effect size of Cohen’s $d = .32$ (the average effect size of the effective interventions from RIRP:I), we had 99.6% power to detect a reduction against control at T1 at $p < .01$ and 99.2% power to detect a reduction against...
control at T2 at $p < .01$. The T1 data had 80% power to detect $d = .21$ at $p < .01$, and the T2 data had 80% power to detect $d = .22$ at $p < .01$.

Procedure. The procedure for Study 2 was similar to Study 1 with several exceptions. First, the data were collected at 17 sites instead of 2. Most participants from these sites came from psychology participant pools and some were collected through psychology classes. Thirteen of 17 sites ($N = 3468$) collected data for the study online as in Study 1, whereas four sites ($N = 1827$) collected data for the first session in-lab and data for the second session online. Procedurally, all participants completed a pretest IAT instead of being randomly assigned to a pretest IAT or not. There was also one day (24 hours) between the initial session and the contact e-mail for the follow-up session. On average, participants returned for the second session after 1.90 days ($SD = 2.97$ days). The interventions remained unchanged with the exception of the Counterstereotypic Training with the IAT, Faking the IAT, and Using Implementation Intentions interventions, which were slightly modified to accommodate changes in procedure and setting (see Interventions section for more information).

Lastly, we removed the questionnaires about affirmative action and effort from the second session and replaced them with the Internal and External Motivations to Respond without Prejudice scales (IMS/EMS; Plant & Devine, 1998). We were interested in whether IMS and EMS were affected by the interventions or moderated intervention effects. Participants rated their agreement with items from each scale on a 7-point Likert scale ranging from (1) strongly disagree to (7) strongly agree. The IMS focuses on personal motivation to respond without prejudice and includes items such as “I attempt to act in nonprejudiced ways toward Black people because it is personally important to me” and “Because of my personal values, I believe that using stereotypes about Black people is wrong.” In contrast, the EMS focuses on social pressure to respond without prejudice and includes items such as “I try to act nonprejudiced toward Black people because of pressure from others” and “I try to hide any negative thoughts about Black people in order to avoid negative reactions from others.”

Results

As in Study 1, most analyses were conducted with and without data collection site as a covariate. The interpretation of the results for all analyses did not change due to the exclusion of the covariate, so we report only the analyses with site as a covariate in this section. Following Study 1, we also set our alpha criterion at .01 because of the number of analyses that were conducted. A complete description of the preregistered analysis plan (and deviations from that plan) is available at https://osf.io/7aqm9 and supplemental analyses such as the analyses without site as a covariate are available at https://osf.io/um4ye/.

Implicit racial preferences. Participants completed three IATs over the course of two sessions. Overall, participants held implicit preferences for Whites over Blacks at pretest, posttest, and follow-up assessments ($Ns = 5270, 5271, 4861; Mfs = .57, .30, .45; SDs = .41, .49, .42; ds = 1.39, .61, 1.08$). These IAT scores were positively correlated at similar magnitudes as Study 1, $r_{pretest-posttest}(5256) = .25$, $r_{pretest-follow-up}(4836) = .25$, $r_{posttest-follow-up}(4837) = .27$. IAT scores were moderated by time of assessment, $F(1, 4810) = 257.07, p < .001,
\eta^2_g = .05$, condition, $F(9, 4810) = 33.38, p < .001, \eta^2_g = .06$, and an interaction between time and condition, $F(9, 4810) = 54.34, p < .001, \eta^2_g = .09$, but not by data collection site, $F(19, 4810) = 1.78, p = .019, \eta^2_g = .01$, or an interaction between time and site, $F(19, 4810) = 1.48, p = .081, \eta^2_g = .01$. Condition had significant effects on IAT scores (controlling for site) at posttest, $F(9, 5242) = 72.39, p < .001, \eta^2_g = .11$, but not at pretest, $F(9, 5241) = .83, p = .59, \eta^2_g = .00$, or at follow-up, $F(9, 4832) = 1.19, p = .29, \eta^2_g = 0.0$. See Table 4 for a summary of IAT scores by condition.

Eight of the nine interventions significantly reduced implicit preferences relative to the control condition at posttest controlling for site: Vivid Counterstereotypic Scenario, $F(1, 1001) = 63.21, p < .001, \eta^2_g = .06$, Practicing an IAT with Counterstereotypic Exemplars, $F(1, 1019) = 40.27, p < .001, \eta^2_g = .04$, Shifting Group Boundaries through Competition, $F(1, 1020) = 46.32, p < .001, \eta^2_g = .04$, Shifting Group Affiliations Under Threat, $F(1, 1013) = 25.31, p < .001, \eta^2_g = .02$, Priming Multiculturalism, $F(1, 1013) = 25.31, p < .001, \eta^2_g = .02$, Priming Multiculturalism, $F(1, 245) = 25.97, p < .001, \eta^2_g = .10$. Other interventions were not statistically significant relative to the control, Fs (denominators) were $25.31, 21.97, 9.19$, ps were $.001, .06, .15$, η^2_gs were $.02, .01, .01$. The control condition had a significantly greater preference for White people than any other condition ($\eta^2_g = .02$).

Table 4

<table>
<thead>
<tr>
<th>Implicit Racial Preferences (Study 2)</th>
<th>Pretest</th>
<th>Posttest</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>N</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Control</td>
<td>507</td>
<td>.58</td>
<td>.40</td>
</tr>
<tr>
<td>Exposure to counterstereotypical exemplars</td>
<td>514</td>
<td>.58</td>
<td>.40</td>
</tr>
<tr>
<td>Practicing an IAT with counterstereotypical exemplars</td>
<td>537</td>
<td>.59</td>
<td>.40</td>
</tr>
<tr>
<td>Shifting group boundaries through competition</td>
<td>537</td>
<td>.56</td>
<td>.41</td>
</tr>
<tr>
<td>Shifting group affiliations under threat</td>
<td>525</td>
<td>.57</td>
<td>.40</td>
</tr>
<tr>
<td>Appeals to egalitarian values</td>
<td>514</td>
<td>.54</td>
<td>.44</td>
</tr>
<tr>
<td>Priming multiculturalism</td>
<td>514</td>
<td>.54</td>
<td>.44</td>
</tr>
<tr>
<td>Evaluative conditioning</td>
<td>524</td>
<td>.55</td>
<td>.40</td>
</tr>
<tr>
<td>Evaluative conditioning with the GNAT</td>
<td>519</td>
<td>.58</td>
<td>.40</td>
</tr>
<tr>
<td>Intentional strategies to overcome biases</td>
<td>560</td>
<td>.57</td>
<td>.40</td>
</tr>
<tr>
<td>Faking the IAT</td>
<td>533</td>
<td>.55</td>
<td>.42</td>
</tr>
</tbody>
</table>

Note. Descriptive statistics reflect d scores (Greenwald et al., 2003), and positive values indicate greater preference for White people compared to Black people. $d =$ Cohen’s d effect size reflecting change in implicit preference relative to control. Significance is from a t test contrasting an experimental condition against the control condition.

$p < .05$. **$p < .01$. ***$p < .001$.
highly correlated, between sessions (in seconds), site, and the interaction between model predicting follow-up IAT scores from condition, time be-
false positive. The number of tests, our default interpretation is that this is likely a significant reduction posttest IAT scores controlling for site, time be-
Evaluative Conditioning was the one intervention that failed to significantly reduce posttest IAT scores from condition, time be-
1008) /H11005
preferences (controlling for site) at posttest,
assessments (4855) = .04, p = .010. Internal motivation was negatively related to explicit preferences, rposttest = -.30, p < .001, rfollow-up = -.31, p < .001 and implicit preferences, rprotostest = -.09, p < .001, rposttest = -.10, p < .001, rfollow-up = -.05, p = .001, such that higher internal motivation predicted lower pro-White/anti-Black preference. External motivation was positively related to explicit preferences, rposttest = .29, p < .001, rfollow-up = .29, p < .001 and implicit preferences, rprotostest = .12, p < .001, rposttest = .07, p < .001, rfollow-up = .11, p < .001, such that higher external motivation predicted greater pro-White/anti-Black preference.
Condition (controlling for site) did not affect internal motivation, F(9, 4838) = .49, p = .88, n²g = .00, or external motivation, F(9, 4835) = .80, p = .62, n²g = .00, to respond without prejudice. Further, internal motivation did not interact with condition (controlling for site) in predicting posttest IAT scores, F(9, 4806) = 1.93, p = .044, n²g = .00, or follow-up IAT scores, F(9, 4802) = 1.50, p = .14, n²g = .00. Similarly, external motivation did not interact with condition (controlling) for site in predicting posttest IAT scores, F(9, 4803) = .97, p = .47, n²g = .00, or follow-up IAT scores, F(9, 4800) = 1.60, p = .11, n²g = .00. Prior research had

None of the interventions significantly reduced implicit preferences relative to control at follow-up (controlling for site). However, Implementation Intentions reduced implicit racial preferences at follow-up at p < .05 but was not significant by our p < .01 criterion, F(1, 956) = 5.00, p = .026, n²g = .01. Given the number of tests, our default interpretation is that this is likely a false positive.
To examine how quickly intervention effects faded, we tested a model predicting follow-up IAT scores from condition, time be-
variations in follow-up preferences than the variation in follow-up
Explicit racial preferences. Participants reported overall preferences for Whites over Blacks at both posttest and follow-up assessments (Ns = 5149, 4782; Ms = .41, .41, SDs = .87, .88, ds = .46, .47). Explicit preferences at posttest and follow-up were highly correlated, r(4711) = .86. Condition did not affect explicit preferences (controlling for site) at posttest, F(9, 5120) = 1.56, p = .12, n²g = .00, at follow-up, F(9, 4753) = 2.21, p = .019, n²g = .00, or on the average of posttest and follow-up scores, F(9, 4684) = 1.70, p = .083, n²g = .02. See Table 5 for a summary of explicit preferences by condition.
Implicit–explicit relations. Implicit and explicit preferences were weakly related at posttest, r(5125) = .16, p < .001, and at follow-up, r(4727) = .17, p < .001. To test the effect of interventions on the strength of implicit-explicit relations, we tested models that predicted explicit preferences from condition, site, implicit preferences, and an interaction between condition and implicit preferences. We did not find evidence for an interaction between condition and implicit preferences at either posttest, F(9, 5088) = .91, p = .52, n²g = .00, or at follow-up, F(9, 4720) = .76, p = .66, n²g = .00. Testing the reverse models (predicting implicit preferences from condition, site, explicit preferences, and an interaction between condition and explicit preferences) did not lead to an interaction either at posttest, F(9, 5088) = 1.25, p = .26, n²g = .00, or at follow-up, F(9, 4720) = .77, p = .64, n²g = .00.

Table 5

Explicit Racial Preferences (Study 2)

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>d</th>
<th></th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>492</td>
<td>.44</td>
<td>.86</td>
<td>N/A</td>
<td></td>
<td>452</td>
<td>.44</td>
<td>.83</td>
<td>N/A</td>
</tr>
<tr>
<td>Exposure to counterstereotypical exemplars</td>
<td>503</td>
<td>.38</td>
<td>.84</td>
<td>.07</td>
<td>478</td>
<td>.36</td>
<td>.84</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>Practicing an IAT with counterstereotypical exemplars</td>
<td>524</td>
<td>.32</td>
<td>.77</td>
<td>.15*</td>
<td>479</td>
<td>.32</td>
<td>.82</td>
<td>.15*</td>
<td></td>
</tr>
<tr>
<td>Shifting group boundaries through competition</td>
<td>518</td>
<td>.38</td>
<td>.77</td>
<td>.07</td>
<td>484</td>
<td>.34</td>
<td>.90</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>Shifting group affiliations under threat</td>
<td>512</td>
<td>.39</td>
<td>.89</td>
<td>.06</td>
<td>466</td>
<td>.43</td>
<td>.92</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Appeals to egalitarian values</td>
<td>503</td>
<td>.37</td>
<td>.85</td>
<td>.08</td>
<td>473</td>
<td>.43</td>
<td>.92</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Priming multiculturalism</td>
<td>513</td>
<td>.45</td>
<td>.87</td>
<td>-.01</td>
<td>480</td>
<td>.47</td>
<td>.88</td>
<td>-.04</td>
<td></td>
</tr>
<tr>
<td>Evaluative conditioning</td>
<td>506</td>
<td>.44</td>
<td>.97</td>
<td>.00</td>
<td>471</td>
<td>.39</td>
<td>.93</td>
<td>.06</td>
<td></td>
</tr>
<tr>
<td>Evaluative conditioning with the GNAT</td>
<td>553</td>
<td>.47</td>
<td>.92</td>
<td>-.03</td>
<td>508</td>
<td>.49</td>
<td>.97</td>
<td>-.06</td>
<td></td>
</tr>
<tr>
<td>Faking the IAT</td>
<td>525</td>
<td>.45</td>
<td>.84</td>
<td>-.01</td>
<td>491</td>
<td>.47</td>
<td>.82</td>
<td>-.04</td>
<td></td>
</tr>
</tbody>
</table>

Note. The explicit measures are an average between two items after standardizing each measure (SD = 1) while retaining a rational zero point indicating no preference. More positive scores indicate greater preference for White people over Black people. d = Cohen’s d effect size reflecting change in preference relative to control.
*p < .05.
found that internal and external motivation interact in predicting IAT scores (Devine, Plant, Amodio, Harmon-Jones, & Vance, 2002), such that people with high internal and low external motivation show lower implicit bias than other people. We did not find evidence for this interaction (controlling for site) at any time point, $p_s = .62, .88, .47, \eta^2_p = .00, .00, .00$, nor did we find significant evidence for a three-way interaction between internal motivation, external motivation, and condition (controlling for site) at posttest, $F(9, 4776) = .55, p = .84, \eta^2_p = .00, or follow-up, $F(9, 4773) = 1.02, p = .42, \eta^2_p = .00$. This suggests that internal and external motivations were not reliably related to how participants engaged with the interventions.

Robustness checks and attrition rates.

Robustness checks. In this section, we summarize our efforts to test the robustness of our results (See https://osf.io/um4ye/) for a supplement with a complete review of these tests. We tested alternative statistical models of IAT score change, whether demographic characteristics (i.e., university affiliation, participant race, characteristics of the university town population) were related to intervention effectiveness, and whether IAT variant (i.e., stimuli, category labels, and background color) and IAT order (i.e., taking the compatible vs. incompatible block first) were related to IAT scores.

As with Study 1, we did not find positive evidence for any of these robustness checks except for IAT order. Taking the compatible block first instead of the incompatible block first led to smaller pretest IAT scores, no difference in the posttest IAT, and higher follow-up IAT scores. IAT order did not interact with experimental condition in predicting IAT scores. Interestingly, we found the proportion of White students and the proportion of Black students in a university were both weakly positively related to greater implicit and explicit preferences for White people over Black people (r ranging from .04 to .12). Neither variable interacted with experimental condition in predicting IAT scores. These results are consistent with recent findings showing that people in states with a larger proportion of Black residents tended to have higher IAT scores (Rae, Newheiser, & Olson, 2015), although the many analyses conducted suggest that one should be cautious in overinterpreting these effects.

Attrition rates. As with Study 1, we analyzed attrition rates with all participants who began the study except for participants who took T1 multiple times, participants who identified as Black or White/Black multiracial or chose not to report their racial identity, and participants who accessed the second session before the first session. This left a sample of 5560 participants who began the study, of which 5398 (97.1%) completed the first session and 5042 (90.7%) completed both sessions.

We did not find differential attrition by experimental condition for attrition rates in the first session, $\chi^2(9, N = 5455) = 8.59, p = .48$, attrition rates for participants who completed the first session but not the second, $\chi^2(9, N = 5398) = 9.90, p = .36$, or overall attrition rates, $\chi^2(9, N = 5455) = 8.90, p = .45$. As suggested by reviewers, we also tested models examining attrition as a function of both pretest IAT scores and experimental condition. Pretest IAT scores did not significantly predict at $p < .01$ attrition rates within the first session, $\chi^2(1, N = 5415) = 4.56, p = .033$, attrition rates for participants who completed the first session but not the second, $\chi^2(1, N = 5363) = 7.62, p = .006$, and attrition rates overall, $\chi^2(9, N = 5415) = 9.30, p = .002$. Corresponding zero-order correla-

General Discussion

In two studies with 6,321 total participants, we compared the effectiveness of nine interventions on reducing implicit preferences immediately or after a delay. All nine interventions were effective at reducing implicit preferences immediately, and none were effective after a delay.

Interventions Were Effective at Inducing Short-Term Malleability in Implicit Preferences

Interventions varied greatly in their effectiveness at shifting implicit preferences immediately (see Figure 2). The sham intervention, Faking the IAT, was most effective when meta-analytically aggregating across both studies, $d = 1.03, 95\% CI [.92, 1.15]$. The most effective nonsham intervention was Vivid Counterstereotypic Scenario, $d = .52, 95\% CI [.40, .63]$, followed by Using Implementation Intentions, $d = .44, 95\% CI [.33, .55]$, Practicing an IAT with Counterstereotypical Exemplars, $d = .40, 95\% CI [.28, .51]$, Shifting Group Boundaries Through Competition $d = .39, 95\% CI [.28, .50]$, Shifting Group Affiliations Under Threat $d = .32, 95\% CI [.21, .44]$, Priming Multiculturalism $d = .29, 95\% CI [.18, .40]$, Evaluative Conditioning with the GNAT $d = .26, 95\% CI [.14, .37]$, and Evaluative Conditioning $d = .15, 95\% CI [.04, .26]$.

The current (RIRP:II) meta-analytic effect sizes were remarkably consistent with RIRP:I. Differences in effect size between RIRP:I and RIRP:II ranged from $d = .00$ to $d = .64$ with an median difference of $d = .06$. There was one outlier, however: Faking the IAT. This sham intervention had an effect in RIRP:II that was more than double the size ($d = 1.03$) of the effect in RIRP:I ($d = .39$). Without Faking the IAT, the correlation between effect sizes was $r = .91$ and the average effect sizes for RIRP:I and RIRP:II were both $d = .35$. Including Faking the IAT in the analyses reduced the correlation to $r = .51$ and increased the average effect size of RIRP:II to $d = .42$. Why was Faking the IAT so much more effective in the current research? One potential explanation could be differences in participant motivation. RIRP:I used online volunteers and RIRP:II used undergraduate participants receiving credit. The latter could be more compliant with faking instructions.

As with RIRP:I, there was considerable variation in immediate effectiveness. Effect sizes ranged from $d = .15$ to $d = 1.03$, with an average d of .42 and a standard deviation of .25. Combining interventions across their four descriptive categories suggests that the most effective category was Intentional Strategies to Overcome Bias, $d = .72, 95\% CI [.64, .80]$, followed by Exposure to Counterstereotypical Exemplars, $d = .41, 95\% CI [.35, .46]$, Appealing to Egalitarian Values, $d = .29, 95\% CI [.18, .40]$, and
Evaluative Conditioning, $d = 0.20$, 95% CI [0.12, 0.28]. Interventions that were more self-relevant, emotional, and vivid tended to be more effective than those which were less involving. These category rankings are similar to RIRP:I with the exception of Intentional Strategies to Overcome Bias, which yielded an aggregate effect size that was more than double the size of the original studies. These effects are driven more by increases in Faking the IAT’s effectiveness than increases in Using Implementation Intentions effectiveness.

Interventions Were Not Effective at Changing Implicit Preferences After a Delay

In contrast to the interventions’ immediate effectiveness, all nine interventions failed to create sustained change in implicit preferences after a delay of up to several days despite well-powered samples (see Figure 2). Using Implementation Intentions was the closest to producing a robust effect, $d = 0.12$, 95% CI [0.01, 0.24]. The rest were robustly ineffective: Shifting Group Boundaries Through Competition, $d = 0.09$, 95% CI [−0.02, 0.21], Evaluative Conditioning with the GNAT, $d = 0.07$, 95% CI [−0.05, 0.18], Priming Multiculturalism, $d = 0.05$, 95% CI [−0.07, 0.17], Practicing an IAT with Counterstereotypical Exemplars, $d = 0.04$, 95% CI [−0.08, 0.15], Faking the IAT, $d = 0.03$, 95% CI [−0.09, 0.15], Evaluative Conditioning, $d = 0.01$, 95% CI [−0.11, 0.13], and Shifting Group Affiliations Under Threat, $d = −0.02$, 95% CI [−0.14, 0.09].

Some participants came back to take the study within one day, whereas others came back after several days. We examined whether this was related to differences in intervention effectiveness. It’s possible that some intervention effects declined rapidly, whereas others declined more slowly. We did not find evidence for this, as time between sessions did not explain variability in intervention effectiveness. This suggests that the fading away of intervention effects occurred within a day or so rather than over the course of several days.

Implicit Preference Malleability Does Not Necessarily Indicate Implicit Preference Change

The most dramatic result of the current research is simultaneous strong evidence for short-term malleability in implicit preference and little evidence for long-term implicit preference change just a couple of days later. One interpretation is that implicit preferences are stable over time and are not susceptible to long-term change. Recent advances in developmental psychology appear to support this claim. Implicit preferences for social groups are observable within the first year of an infant’s life (Baron, 2013) and White children as young as 3 years old exhibit implicit pro-White racial attitudes which remain stable throughout development (e.g., Dunham, Chen, & Banaji, 2013). These implicit preferences for one’s own group are also present from an early age for other social categories including gender, religion, and caste (Cvencek, Greenwald, & Meltzoff, 2011; Dunham, Srinivasan, Dotsch, & Barner, 2014; Heiphetz, Spelke, & Banaji, 2013). However, the absence of developmental change in implicit preferences may reflect the stability of exposure to cultural messages rather than a deep level of stability in the implicit preferences themselves (Baron, 2015). From this view, it is possible to affect long-term change in implicit preferences but the interventions tested in the current studies were inadequate for doing so. In this section, we review three alternative explanations for how interventions could change implicit preferences in the long-term, despite the evidence shown here.

Effective mechanisms have not yet been tested. It could be that effective mechanisms for long-term implicit preference change have simply not yet been tested. Although it is certainly true that researchers have not tested all mechanisms for implicit preference change, this is not a compelling dismissal of the current...
results. The nine interventions tested in the current research were culled from a larger pool of 18 interventions from RIRP-I that social psychological researchers thought would be maximally effective for changing implicit preferences. Those 18 interventions reflected state-of-the-art knowledge about implicit attitude change at the time. These nine interventions were also distinct because they were immediately effective at reducing implicit preferences, which is an almost-necessary condition for long-term attitude change (cf. the sleeper effect and interventions which elicit downstream exposure to external sources of attitude change; Frey & Rogers, 2014; Hovland, Lumsdaine, & Sheffield, 1949; Pratkanis, Greenwald, Leippe, & Baumgardner, 1988). Also, these interventions represent a wide range of the published literature on bias-reduction techniques (see reviews by Blair, 2002; Dasgupta, 2013; Lai et al., 2013; Sritharan & Gawronski, 2010). However, new approaches which have been published since RIRP-I might yield stronger evidence for long-term effectiveness (e.g., Hu, Antony, Creery, Vargas, Bodenhausen, & Paller, 2015; Maister, Slater, Sanchez-Vives, & Tsakiris, 2015).

It is also possible that interventions are not changing implicit preferences per se, but are instead changing nonassociative factors that are related to IAT performance (Calanchini, Sherman, Klauer, & Lai, 2014; Calanchini & Sherman, 2013; Lai et al., 2013). For example, changes in IAT scores may reflect temporary changes in task performance rather than altering associations in memory. This is likely for Faking the IAT, and could occur for other manipulations. Mathematical modeling procedures such as the Quadruple Process model that attempt to decompose the processes contributing to IAT performance could be used to test this (Calanchini, Gonsalkorale, Sherman, & Klauer, 2013; Gonsalkorale, Allen, Sherman, & Klauer, 2010; Sherman et al., 2008). Alternatively, these interventions could be administered with multiple implicit measures as dependent variables (Bar-Anan & Nosek, 2014). Other measures may not be sensitive to the same extraneous influences, so examining effects across measures could triangulate what changes are due to idiosyncratic features of implicit measures.

Interventions need to be longer or more intensive. It is possible the mechanisms employed by interventions in the current studies can be effective, but the current interventions were not long or intensive enough to create long-lasting change. Supporting this claim, Devine and colleagues (2012) found reduced implicit racial preferences (relative to a control) after 12 weeks using an hour-long intervention that included many of the methods employed in the current research. However, follow-up replications employing larger samples did not replicate evidence for effectiveness of even this substantial intervention (Forscher, Mitamura, Dix, Cox, & Devine, 2016). This suggests that simply making interventions longer and more intensive will not be sufficient for long-term change.

It is also possible that brief interventions can be effective, but only when administered repeatedly over time in a spaced learning schedule (Greene, 1990; Hintzman & Block, 1973). Moreover, giving participants reminder cues shortly before follow-up testing might activate memories of interventions so that they are influential. To our knowledge, neither of these approaches to increasing intervention effectiveness has been systematically tested with implicit measures.

One area of promising evidence for long-term change is research involving prolonged everyday experiences. These interventions are primarily conducted outside of psychology laboratories. Prolonged interventions that have been successful in changing implicit preferences and stereotypes include: taking a semester-long class on prejudice and intergroup conflict (Rudman, Ashmore, & Gary, 2001), having an college roommate who is of a different race (Shook & Fazio, 2008), participating in a cultural music education program (Neto, da Conceição Pinto, & Mullet, 2015), and taking a class with a female professor (Dasgupta & Asgari, 2004; Stout, Dasgupta, Hunsinger, & McManus, 2011). In many ways, these field tests may best represent how implicit associations change in real-world settings. An important caveat for most of these studies, however, is that they assess implicit associations while the study interventions are still ongoing. Thus, they do not provide evidence of the durability of these interventions. It could be that associations remain changed after a prolonged experience is over, or that they return to preintervention baseline after exposure to the intervention ends.

We have the right interventions, but the wrong population. A sobering possibility is that these interventions are effective for long-term change, but that change is too difficult for adults. Implicit racial preferences may be ingrained early in development (Dunham et al., 2013) and may only be susceptible to interventions at certain points in the life span (Baron, 2015). Interventions on children could be more effective because implicit preferences are more sensitive to experiences at younger ages (i.e., a critical period) or because adults’ associations are more stable because they have accumulated more experiences related to an association over a lifetime. We are aware of only four studies that have experimentally examined change in children’s implicit preferences to test these questions (Gonzalez, Steele, & Baron, 2016; Neto et al., 2015; Vezzali et al., 2012; Xiao et al., 2015). As one example, Neto and colleagues’ (2015) tested an education program where sixth-graders learned about music and culture from Cape Verde over the course of six months. Compared with sixth-graders who did not undergo this education program, participants showed reduced implicit and explicit anti-dark-skin preferences up to two years after completion of the education program. This suggests that children’s’ implicit preferences can remain changed for years after an intervention has taken place. Understanding how and when will be important next steps.

Ineffectiveness in Changing Explicit Prejudice, Beliefs, and Motivations

Not only did all of the interventions tested here fail to reduce implicit racial preferences, but they also failed to reduce explicit racial prejudice. Moreover, the interventions did not change support for affirmative action or internal/external motivations to respond without prejudice. These null findings may reflect a general lack of malleability in these constructs or a side effect of the fact that interventions were designed to focus on changing implicit preferences. Studies that specifically target explicit racial prejudice, support for affirmative action, or motivations to respond without prejudice may yield more evidence of effectiveness.
Conclusion

The current work showcases nine interventions of an initial field of 18 that were effective at reducing implicit preferences immediately. However, the intervention effects were fleeting, lasting less than a couple days. These findings are a testament to how the mind’s prejudices remain steadfast in the face of efforts to change them. Understanding when implicit preferences can be changed in the long-term will be the next frontier for research on change in implicit associations.

References

